Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Resource
  • Published:

Diverse epigenetic strategies interact to control epidermal differentiation

Abstract

It is becoming clear that interconnected functional gene networks, rather than individual genes, govern stem cell self-renewal and differentiation. To identify epigenetic factors that impact on human epidermal stem cells we performed siRNA-based genetic screens for 332 chromatin modifiers. We developed a Bayesian mixture model to predict putative functional interactions between epigenetic modifiers that regulate differentiation. We discovered a network of genetic interactions involving EZH2, UHRF1 (both known to regulate epidermal self-renewal), ING5 (a MORF complex component), BPTF and SMARCA5 (NURF complex components). Genome-wide localization and global mRNA expression analysis revealed that these factors impact two distinct but functionally related gene sets, including integrin extracellular matrix receptors that mediate anchorage of epidermal stem cells to their niche. Using a competitive epidermal reconstitution assay we confirmed that ING5, BPTF, SMARCA5, EZH2 and UHRF1 control differentiation under physiological conditions. Thus, regulation of distinct gene expression programs through the interplay between diverse epigenetic strategies protects epidermal stem cells from differentiation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chromatin-wide siRNA-based screen.
Figure 2: siRNA screen reveals known and previously unknown players controlling epidermal differentiation.
Figure 3: A Bayesian statistical model predicts functional/genetic interactions.
Figure 4: Genome-wide identification of subnetwork target genes.
Figure 5: Subnetwork components target distinct gene sets.
Figure 6: Targeted gene sets encode proteins with overlapping functions.
Figure 7: Genes regulated by distinct arms of the self-renewal subnetwork exhibit genetic interactions themselves.
Figure 8: Epidermal reconstitution assays verify physiological relevance of self-renewal subnetwork components.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Barabasi, A. L. & Oltvai, Z. N. Network biology: understanding the cell’s functional organization. Nat. Rev. Genet. 5, 101–113 (2004).

    Article  CAS  Google Scholar 

  2. Boutros, M. & Ahringer, J. The art and design of genetic screens: RNA interference. Nat. Rev. Genet. 9, 554–566 (2008).

    Article  CAS  Google Scholar 

  3. Mani, R., St Onge, R. P., Hartman, J. L. t., Giaever, G. & Roth, F. P. Defining genetic interaction. Proc. Natl Acad. Sci. USA 105, 3461–3466 (2008).

    Article  CAS  Google Scholar 

  4. Perez-Perez, J. M., Candela, H. & Micol, J. L. Understanding synergy in genetic interactions. Trends Genet. 25, 368–376 (2009).

    Article  CAS  Google Scholar 

  5. Blanpain, C. & Fuchs, E. Epidermal stem cells of the skin. Annu. Rev. Cell Dev. Biol. 22, 339–373 (2006).

    Article  CAS  Google Scholar 

  6. Watt, F. M. Role of integrins in regulating epidermal adhesion, growth and differentiation. EMBO J. 21, 3919–3926 (2002).

    Article  CAS  Google Scholar 

  7. Green, H. The birth of therapy with cultured cells. Bioessays 30, 897–903 (2008).

    Article  Google Scholar 

  8. Pellegrini, G. et al. p63 identifies keratinocyte stem cells. Proc. Natl Acad. Sci. USA 98, 3156–3161 (2001).

    Article  CAS  Google Scholar 

  9. Koster, M. I. & Roop, D. R. The role of p63 in development and differentiation of the epidermis. J. Dermatol. Sci. 34, 3–9 (2004).

    Article  CAS  Google Scholar 

  10. Eckert, R. L., Crish, J. F., Banks, E. B. & Welter, J. F. The epidermis: genes on–genes off. J. Invest. Dermatol. 109, 501–509 (1997).

    Article  CAS  Google Scholar 

  11. Driskell, I. et al. The histone methyltransferase Setd8 acts in concert with c-Myc and is required to maintain skin. EMBO J. 31, 616–629 (2012).

    Article  CAS  Google Scholar 

  12. Ezhkova, E. et al. EZH1 and EZH2 cogovern histone H3K27 trimethylation and are essential for hair follicle homeostasis and wound repair. Genes Dev. 25, 485–498 (2011).

    Article  CAS  Google Scholar 

  13. Ezhkova, E. et al. Ezh2 orchestrates gene expression for the stepwise differentiation of tissue-specific stem cells. Cell 136, 1122–1135 (2009).

    Article  CAS  Google Scholar 

  14. Luis, N. M. et al. Regulation of human epidermal stem cell proliferation and senescence requires polycomb- dependent and -independent functions of Cbx4. Cell Stem. Cell 9, 233–246 (2011).

    Article  CAS  Google Scholar 

  15. Mejetta, S. et al. Jarid2 regulates mouse epidermal stem cell activation and differentiation. EMBO J. 30, 3635–3646 (2011).

    Article  CAS  Google Scholar 

  16. Sen, G. L., Reuter, J. A., Webster, D. E., Zhu, L. & Khavari, P. A. DNMT1 maintains progenitor function in self-renewing somatic tissue. Nature 463, 563–567 (2010).

    Article  CAS  Google Scholar 

  17. Sen, G. L., Webster, D. E., Barragan, D. I., Chang, H. Y. & Khavari, P. A. Control of differentiation in a self-renewing mammalian tissue by the histone demethylase JMJD3. Genes Dev. 22, 1865–1870 (2008).

    Article  CAS  Google Scholar 

  18. Connelly, J. T. et al. Actin and serum response factor transduce physical cues from the microenvironment to regulate epidermal stem cell fate decisions. Nat. Cell Biol. 12, 711–718 (2010).

    Article  CAS  Google Scholar 

  19. Gosselet, F. P., Magnaldo, T., Culerrier, R. M., Sarasin, A. & Ehrhart, J. C. BMP2and BMP6 control p57(Kip2) expression and cell growth arrest/terminal differentiation in normal primary human epidermal keratinocytes. Cell Signal 19, 731–739 (2007).

    Article  CAS  Google Scholar 

  20. Kolev, V. et al. EGFR signalling as a negative regulator of Notch1 gene transcription and function in proliferating keratinocytes and cancer. Nat. Cell Biol. 10, 902–911 (2008).

    Article  CAS  Google Scholar 

  21. Kuramoto, N. et al. Development of ichthyosiform skin compensates for defective permeability barrier function in mice lacking transglutaminase 1. J. Clin. Invest. 109, 243–250 (2002).

    Article  CAS  Google Scholar 

  22. Matsuki, M. et al. Defective stratum corneum and early neonatal death in mice lacking the gene for transglutaminase 1 (keratinocyte transglutaminase). Proc. Natl Acad. Sci. USA 95, 1044–1049 (1998).

    Article  CAS  Google Scholar 

  23. Vermeulen, M. et al. Quantitative interaction proteomics and genome-wide profiling of epigenetic histone marks and their readers. Cell 142, 967–980 (2010).

    Article  CAS  Google Scholar 

  24. Doyon, Y. et al. ING tumor suppressor proteins are critical regulators of chromatin acetylation required for genome expression and perpetuation. Mol. Cell 21, 51–64 (2006).

    Article  CAS  Google Scholar 

  25. Luc, P. V. & Tempst, P. PINdb: a database of nuclear protein complexes from human and yeast. Bioinformatics 20, 1413–1415 (2004).

    Article  CAS  Google Scholar 

  26. Rahman, S. et al. The Brd4 extraterminal domain confers transcription activation independent of pTEFb by recruiting multiple proteins, including NSD3. Mol. Cell Biol. 31, 2641–2652 (2011).

    Article  CAS  Google Scholar 

  27. Indra, A. K. et al. Temporally controlled targeted somatic mutagenesis in embryonic surface ectoderm and fetal epidermal keratinocytes unveils two distinct developmental functions of BRG1 in limb morphogenesis and skin barrier formation. Development 132, 4533–4544 (2005).

    Article  CAS  Google Scholar 

  28. Kashiwagi, M., Morgan, B. A. & Georgopoulos, K. The chromatin remodeler Mi- 2β is required for establishment of the basal epidermis and normal differentiation of its progeny. Development 134, 1571–1582 (2007).

    Article  CAS  Google Scholar 

  29. Costanzo, M. et al. The genetic landscape of a cell. Science 327, 425–431 (2010).

    Article  CAS  Google Scholar 

  30. Wang, X., Castro, M. A., Mulder, K. W. & Markowetz, F. Posterior association networks and functional modules inferred from rich phenotypes of gene perturbation. PLoS Comput. Biol. 8, e1002566 (2012).

    Article  CAS  Google Scholar 

  31. Horn, T. et al. Mapping of signaling networks through synthetic genetic interaction analysis by RNAi. Nat. Methods 8, 341–346 (2011).

    Article  CAS  Google Scholar 

  32. Wysocka, J. et al. A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling. Nature 442, 86–90 (2006).

    Article  CAS  Google Scholar 

  33. LeRoy, G., Loyola, A., Lane, W. S. & Reinberg, D. Purification and characterization of a human factor that assembles and remodels chromatin. J. Biol. Chem. 275, 14787–14790 (2000).

    Article  CAS  Google Scholar 

  34. Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006).

    Article  CAS  Google Scholar 

  35. Ernst, J. et al. Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 473, 43–49 (2011).

    Article  CAS  Google Scholar 

  36. Champagne, K. S. et al. The crystal structure of the ING5 PHD finger in complex with an H3K4me3 histone peptide. Proteins 72, 1371–1376 (2008).

    Article  CAS  Google Scholar 

  37. Kouwenhoven, E. N. et al. Genome-wide profiling of p63 DNA-binding sites identifies an element that regulates gene expression during limb development in the 7q21 SHFM1 locus. PLoS Genet. 6, e1001065 (2010).

    Article  Google Scholar 

  38. Li, A. G., Koster, M. I. & Wang, X. J. Roles of TGFβ signaling in epidermal/appendage development. Cytokine Growth Factor Rev. 14, 99–111 (2003).

    Article  CAS  Google Scholar 

  39. Ficz, G. et al. Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature 473, 398–402 (2011).

    Article  CAS  Google Scholar 

  40. Williams, K. et al. TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity. Nature 473, 343–348 (2011).

    Article  CAS  Google Scholar 

  41. Truong, A. B., Kretz, M., Ridky, T. W., Kimmel, R. & Khavari, P. A. p63 regulates proliferation and differentiation of developmentally mature keratinocytes. Genes Dev. 20, 3185–3197 (2006).

    Article  CAS  Google Scholar 

  42. LeBoeuf, M. et al. Hdac1 and Hdac2 act redundantly to control p63 and p53 functions in epidermal progenitor cells. Dev. Cell 19, 807–818 (2010).

    Article  CAS  Google Scholar 

  43. Gandarillas, A. & Watt, F. M. c-Myc promotes differentiation of human epidermal stem cells. Genes Dev. 11, 2869–2882 (1997).

    Article  CAS  Google Scholar 

  44. Birmingham, A. et al. Statistical methods for analysis of high-throughput RNA interference screens. Nat. Methods 6, 569–575 (2009).

    Article  CAS  Google Scholar 

  45. Reich, M. et al. GenePattern 2.0. Nat. Genet 38, 500–501 (2006).

    Article  CAS  Google Scholar 

  46. Pavlidis, P. & Noble, W. S. Matrix2png: a utility for visualizing matrix data. Bioinformatics 19, 295–296 (2003).

    Article  CAS  Google Scholar 

  47. Backes, C. et al. GeneTrail–advanced gene set enrichment analysis. Nucleic Acids Res. 35, W186–W192 (2007).

    Article  Google Scholar 

  48. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    Article  CAS  Google Scholar 

  49. Dempster, A. P., Laird, N. M. & Rubin, D. B. Maximum likelihood from incomplete data via the EM algorithm. J. R. Statist. Soc. B 39, 1–38 (1977).

    Google Scholar 

  50. Jeffreys, H. Theory of Probability 3rd edn, (Oxford Univ. Press, 1998).

  51. Suzuki, R. & Shimodaira, H. Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics 22, 1540–1542 (2006).

    Article  CAS  Google Scholar 

  52. Schmidt, D. et al. ChIP-seq: using high-throughput sequencing to discover protein-DNA interactions. Methods 48, 240–248 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Brenkman, J. Carroll, N. Rosenfeld, M. Narita, D. Odom and Watt laboratory members for critical discussion and comments. This work was supported by Cancer Research UK (CRUK), Hutchinson Wampoa, University of Cambridge (F.M.W.) and a Marie Curie Fellowship (PIEF-GA-2008-220642) to K.W.M. We are indebted to the core facilities of the CRUK Cambridge Research Institute for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

K.W.M. conceived the study, designed, performed and analysed experiments and performed bioinformatic analysis. X.W. developed the Bayesian mixture model and network analysis. C.E. and G.S. contributed to the skin reconstitution assays. Y.I. performed bisulphite sequencing analysis. R.F.S. performed bioinformatic analysis. J.G. performed mRNA co-expression analysis. G.D. analysed data and contributed to experimental design. S.U-L. performed 5hmeDNA dot-blot analysis. P.P. performed mRNA co-expression analysis. A.M. oversaw the work of Y.I. and S.U-L. F.M. analysed data, performed bioinformatic analysis and contributed computational tools. F.M.W. designed experiments, analysed the data and oversaw the study. K.W.M and F.M.W. wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to Klaas W. Mulder or Fiona M. Watt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 554 kb)

Supplementary Table 1

Supplementary Information (XLS 371 kb)

Supplementary Table 2

Supplementary Information (XLS 2342 kb)

Supplementary Table 3

Supplementary Information (XLS 32 kb)

Supplementary Dataset 1

Supplementary Information (XLS 136 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mulder, K., Wang, X., Escriu, C. et al. Diverse epigenetic strategies interact to control epidermal differentiation. Nat Cell Biol 14, 753–763 (2012). https://doi.org/10.1038/ncb2520

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2520

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing