Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

MPS1/Mph1 phosphorylates the kinetochore protein KNL1/Spc7 to recruit SAC components

Abstract

The genomic stability of all organisms depends on the precise partition of chromosomes to daughter cells. The spindle assembly checkpoint (SAC) senses unattached kinetochores and prevents premature entry to anaphase, thus ensuring that all chromosomes attach to opposite spindle poles (bi-orientation) during mitosis1. MPS1 is an evolutionarily conserved protein kinase required for the SAC and chromosome bi-orientation2,3,4. Yet, its primary cellular substrate has remained elusive. We show that fission yeast Mph1 (MPS1 homologue) phosphorylates the kinetochore protein Spc7 (KNL1/Blinkin homologue) at the MELT repeat sequences. This phosphorylation promotes the in vitro binding to the Bub1–Bub3 complex, which is required for kinetochore-based SAC activation (Mad1–Mad2–Mad3 localization) and chromosome alignment. Accordingly, a non-phosphorylatable spc7-12A mutation abolishes kinetochore targeting of Bub1–Bub3, whereas a phospho-mimetic spc7-12E mutation forces them to localize at kinetochores throughout the entire cell cycle, even in the absence of Mph1. Thus, MPS1/Mph1 kinase locating at the unattached kinetochores initially creates a mark, which is crucial for SAC activation and chromosome bi-orientation. This mechanism seems to be conserved in human cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schizosaccharomyces pombe Mph1 kinase targets Bub1 to kinetochores.
Figure 2: Phosphorylation of Spc7 by Mph1 promotes Bub1 targeting to kinetochores.
Figure 3: Phosphorylation of KNL1 by MPS1 promotes BUB1 targeting to kinetochores in human cells.
Figure 4: Phosphorylation of Spc7 by Mph1 promotes direct association between the Bub1–Bub3 complex and Spc7.
Figure 5: Phosphorylation of Spc7 by Mph1 is required for SAC activation and chromosome bi-orientation.

Similar content being viewed by others

References

  1. Musacchio, A. & Salmon, E. D. The spindle-assembly checkpoint in space and time. Nat. Rev. Mol. Cell Biol. 8, 379–393 (2007).

    Article  CAS  Google Scholar 

  2. Hardwick, K. G., Weiss, E., Luca, F. C., Winey, M. & Murray, A. W. Activation of the budding yeast spindle assembly checkpoint without mitotic spindle disruption. Science 273, 953–956 (1996).

    Article  CAS  Google Scholar 

  3. Abrieu, A. et al. Mps1 is a kinetochore-associated kinase essential for the vertebrate mitotic checkpoint. Cell 106, 83–93 (2001).

    Article  CAS  Google Scholar 

  4. Winey, M. & Huneycutt, B. J. Centrosomes and checkpoints: the MPS1 family of kinases. Oncogene 21, 6161–6169 (2002).

    Article  CAS  Google Scholar 

  5. Martin-Lluesma, S., Stucke, V. M. & Nigg, E. A. Role of Hec1 in spindle checkpoint signaling and kinetochore recruitment of Mad1/Mad2. Science 297, 2267–2270 (2002).

    Article  CAS  Google Scholar 

  6. Araki, Y. et al. N-terminal regions of Mps1 kinase determine functional bifurcation. J. Cell Biol. 189, 41–56 (2010).

    Article  CAS  Google Scholar 

  7. Tooley, J. & Stukenberg, P. T. The Ndc80 complex: integrating the kinetochore’s many movements. Chromosome Res. 19, 377–391 (2011).

    Article  Google Scholar 

  8. Kemmler, S. et al. Mimicking Ndc80 phosphorylation triggers spindle assembly checkpoint signalling. EMBO J. 28, 1099–1110 (2009).

    Article  CAS  Google Scholar 

  9. Cheeseman, I. M. & Desai, A. Molecular architecture of the kinetochore-microtubule interface. Nat. Rev. Mol. Cell Biol. 9, 33–46 (2008).

    Article  CAS  Google Scholar 

  10. Maciejowski, J. et al. Mps1 directs the assembly of Cdc20 inhibitory complexes during interphase and mitosis to control M phase timing and spindle checkpoint signaling. J. Cell Biol. 190, 89–100 (2010).

    Article  CAS  Google Scholar 

  11. Vigneron, S. et al. Kinetochore localization of spindle checkpoint proteins: who controls whom? Mol. Biol. Cell 15, 4584–4596 (2004).

    Article  CAS  Google Scholar 

  12. Sliedrecht, T., Zhang, C., Shokat, K. M. & Kops, G. J. Chemical genetic inhibition of Mps1 in stable human cell lines reveals novel aspects of Mps1 function in mitosis. PLoS One 5, e10251 (2010).

    Article  Google Scholar 

  13. Vanoosthuyse, V., Valsdottir, R., Javerzat, J. P. & Hardwick, K. G. Kinetochore targeting of fission yeast Mad and Bub proteins is essential for spindle checkpoint function but not for all chromosome segregation roles of Bub1p. Mol. Cell Biol. 24, 9786–9801 (2004).

    Article  CAS  Google Scholar 

  14. Rischitor, P. E., May, K. M. & Hardwick, K. G. Bub1 is a fission yeast kinetochore scaffold protein, and is sufficient to recruit other spindle checkpoint proteins to ectopic sites on chromosomes. PLoS One 2, e1342 (2007).

    Article  Google Scholar 

  15. Sharp-Baker, H. & Chen, R. H. Spindle checkpoint protein Bub1 is required for kinetochore localization of Mad1, Mad2, Bub3, and CENP-E, independently of its kinase activity. J. Cell Biol. 153, 1239–1250 (2001).

    Article  CAS  Google Scholar 

  16. Williams, G. L., Roberts, T. M. & Gjoerup, O. V. Bub1: escapades in a cellular world. Cell Cycle 6, 1699–1704 (2007).

    Article  CAS  Google Scholar 

  17. De Antoni, A. et al. The Mad1/Mad2 complex as a template for Mad2 activation in the spindle assembly checkpoint. Curr. Biol. 15, 214–225 (2005).

    Article  CAS  Google Scholar 

  18. Kulukian, A., Han, J. S. & Cleveland, D. W. Unattached kinetochores catalyze production of an anaphase inhibitor that requires a Mad2 template to prime Cdc20 for BubR1 binding. Dev. Cell 16, 105–117 (2009).

    Article  CAS  Google Scholar 

  19. Vanoosthuyse, V., Meadows, J. C., van der Sar, S. J., Millar, J. B. & Hardwick, K. G. Bub3p facilitates spindle checkpoint silencing in fission yeast. Mol. Biol. Cell 20, 5096–5105 (2009).

    Article  CAS  Google Scholar 

  20. Lau, D. T. & Murray, A. W. Mad2 and Mad3 Cooperate to Arrest Budding Yeast in Mitosis. Curr. Biol. 22, 180–190 (2012).

    Article  CAS  Google Scholar 

  21. Kiyomitsu, T., Murakami, H. & Yanagida, M. Protein interaction domain mapping of human kinetochore protein Blinkin reveals a consensus motif for binding of spindle assembly checkpoint proteins Bub1 and BubR1. Mol. Cell Biol. 31, 998–1011 (2011).

    Article  CAS  Google Scholar 

  22. Krenn, V., Wehenkel, A., Li, X., Santaguida, S. & Musacchio, A. Structural analysis reveals features of the spindle checkpoint kinase Bub1-kinetochore subunit Knl1 interaction. J. Cell Biol. 196, 451–467 (2012).

    Article  CAS  Google Scholar 

  23. Bernard, P., Hardwick, K. & Javerzat, J. P. Fission yeast bub1 is a mitotic centromere protein essential for the spindle checkpoint and the preservation of correct ploidy through mitosis. J. Cell Biol. 143, 1775–1787 (1998).

    Article  CAS  Google Scholar 

  24. Kerres, A., Jakopec, V. & Fleig, U. The conserved Spc7 protein is required for spindle integrity and links kinetochore complexes in fission yeast. Mol. Biol. Cell 18, 2441–2454 (2007).

    Article  CAS  Google Scholar 

  25. Ito, D., Saito, Y. & Matsumoto, T. Centromere-tethered Mps1 pombe homolog (Mph1) kinase is a sufficient marker for recruitment of the spindle checkpoint protein Bub1, but not Mad1. Proc. Natl Acad. Sci. USA 109, 209–214 (2011).

    Article  Google Scholar 

  26. Taylor, S. S., Ha, E. & McKeon, F. The human homologue of Bub3 is required for kinetochore localization of Bub1 and a Mad3/Bub1-related protein kinase. J. Cell Biol. 142, 1–11 (1998).

    Article  CAS  Google Scholar 

  27. Taylor, S. S. & McKeon, F. Kinetochore localization of murine Bub1 is required for normal mitotic timing and checkpoint response to spindle damage. Cell 89, 727–735 (1997).

    Article  CAS  Google Scholar 

  28. Cheeseman, I. M. et al. A conserved protein network controls assembly of the outer kinetochore and its ability to sustain tension. Genes Dev. 18, 2255–2268 (2004).

    Article  CAS  Google Scholar 

  29. Hiraoka, Y., Toda, T. & Yanagida, M. The NDA3 gene of fission yeast encodes β-tubulin: a cold-sensitive nda3 mutation reversibly blocks spindle formation and chromosome movement in mitosis. Cell 39, 349–358 (1984).

    Article  CAS  Google Scholar 

  30. London, N., Ceto, S., Ranish, J. A. & Biggins, S. Phosphoregulation of Spc105 by Mps1 and PP1 regulates Bub1 localization to kinetochores. Curr. Biol. 22, 900–906 (2012).

    Article  CAS  Google Scholar 

  31. Shepperd, L. A. et al. Phosphodependent recruitment of Bub1 and Bub3 to Spc7/KNL1 by Mph1 kinase maintains the spindle checkpoint. Curr. Biol. 22, 891–899 (2012).

    Article  CAS  Google Scholar 

  32. Maldonado, M. & Kapoor, T. M. Constitutive Mad1 targeting to kinetochores uncouples checkpoint signalling from chromosome biorientation. Nat. Cell. Biol. 13, 475–482 (2011).

    Article  CAS  Google Scholar 

  33. Tange, Y. & Niwa, O. Schizosaccharomyces pombe Bub3 is dispensable formitotic arrest following perturbed spindle formation. Genetics 179, 785–792 (2008).

    Article  CAS  Google Scholar 

  34. Windecker, H., Langegger, M., Heinrich, S. & Hauf, S. Bub1 and Bub3 promote the conversion from monopolar to bipolar chromosome attachment independently of shugoshin. EMBO Rep. 10, 1022–1028 (2009).

    Article  CAS  Google Scholar 

  35. Maure, J. F., Kitamura, E. & Tanaka, T. U. Mps1 kinase promotes sister-kinetochore bi-orientation by a tension-dependent mechanism. Curr. Biol. 17, 2175–2182 (2007).

    Article  CAS  Google Scholar 

  36. Santaguida, S., Tighe, A., D’Alise, A. M., Taylor, S. S. & Musacchio, A. Dissecting the role of MPS1 in chromosome biorientation and the spindle checkpoint through the small molecule inhibitor reversine. J. Cell Biol. 190, 73–87 (2010).

    Article  CAS  Google Scholar 

  37. Shimogawa, M. M. et al. Mps1 phosphorylation of Dam1 couples kinetochores to microtubule plus ends at metaphase. Curr. Biol. 16, 1489–1501 (2006).

    Article  CAS  Google Scholar 

  38. Kawashima, S. A., Yamagishi, Y., Honda, T., Ishiguro, K. & Watanabe, Y. Phosphorylation of H2A by Bub1 prevents chromosomal instability through localizing shugoshin. Science 327, 172–177 (2010).

    Article  CAS  Google Scholar 

  39. Shah, J. V. et al. Dynamics of centromere and kinetochore proteins; implications for checkpoint signaling and silencing. Curr. Biol. 14, 942–952 (2004).

    CAS  PubMed  Google Scholar 

  40. Howell, B. J. et al. Spindle checkpoint protein dynamics at kinetochores in living cells. Curr. Biol. 14, 953–964 (2004).

    Article  CAS  Google Scholar 

  41. Zich, J. et al. Kinase activity of fission yeast Mph1 Is required for Mad2 andMad3 to stably bind the anaphase promoting complex. Curr. Biol. 22, 296–301 (2012).

    Article  CAS  Google Scholar 

  42. Kiyomitsu, T., Obuse, C. & Yanagida, M. Human Blinkin/AF15q14 is required for chromosome alignment and the mitotic checkpoint through direct interaction with Bub1 and BubR1. Dev. Cell 13, 663–676 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Hauf for critical reading of the manuscript and for yeast strains, and all of the members of our laboratory for their valuable support and discussion. This work was supported in part by JSPS Research Fellowships and Grant-in-Aid for Research Activity Start-up (to Y.Y.), the Global COE Program and a Grant-in-Aid for Specially Promoted Research (to Y.W.) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Contributions

Most experiments were performed by Y.Y. except those in Fig. 3 and Supplementary Fig. S4, which were performed by C.Y. and Y.T. Experimental design and interpretation of data were conducted by all authors. Y.W. supervised the project and Y.Y. and Y.W. wrote the paper.

Corresponding author

Correspondence to Yoshinori Watanabe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1718 kb)

Supplementary Table 1

Supplementary Information (XLSX 50 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamagishi, Y., Yang, CH., Tanno, Y. et al. MPS1/Mph1 phosphorylates the kinetochore protein KNL1/Spc7 to recruit SAC components. Nat Cell Biol 14, 746–752 (2012). https://doi.org/10.1038/ncb2515

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2515

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing