Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

RAC1 activation mediates Twist1-induced cancer cell migration

Abstract

Epithelial–mesenchymal transition (EMT), which is characterized by the suppression of the adhesion protein E-cadherin, is a crucial process that promotes metastasis and stem-like properties of cancer cells. However, the dissociation of cellular aggregates is not sufficient to explain why cancer cells move, and the motile nature of cancer cells undergoing EMT remains elusive. Here, we identify a mechanism in which the EMT inducer Twist1 elicits cancer cell movement through activation of RAC1. Twist1 cooperates with BMI1 to suppress let-7i expression, which results in upregulation of NEDD9 and DOCK3, leading to RAC1 activation and enabling mesenchymal-mode movement in three-dimensional environments. Moreover, the suppression of let-7i contributes to Twist1-induced stem-like properties. Clinically, activation of the Twist1–let-7i–NEDD9 axis in head and neck cancer patients correlates with tumour invasiveness and worse outcome. Our results uncover an essential mechanism to explain how Twist1 induces the motile stem-like cancer cell phenotype beyond simply suppressing E-cadherin.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Co-repression of let-7i by Twist1 and BMI1.
Figure 2: Repression of let-7i changes cellular morphology, enhances motility and invasion.
Figure 3: let-7i represses RAC1 activity through targeting NEDD9 and DOCK3.
Figure 4: Repression of let-7i and RAC1 activation is important for Twist1-induced movement.
Figure 5: Repression of let-7i is critical for Twist1-induced tumour invasion.
Figure 6: Activation of the Twist1–let-7i–NEDD9 signal axis correlates with a worse outcome of head and neck cancer patients, and an illustration showing the function of Twist1–let-7i signalling in cancer cells.

Similar content being viewed by others

References

  1. Kalluri, R. & Weinberg, R. A. The basics of epithelial-mesenchymal transition. J. Clin. Invest. 119, 1420–1428 (2009).

    Article  CAS  Google Scholar 

  2. Thiery, J. P., Acloque, H., Huang, R. Y. & Nieto, M. A. Epithelial-mesenchymal transitions in development and disease. Cell 139, 871–890 (2009).

    Article  CAS  Google Scholar 

  3. Mani, S. A. et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133, 704–715 (2008).

    Article  CAS  Google Scholar 

  4. Gupta, P. B. et al. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 138, 645–659 (2009).

    Article  CAS  Google Scholar 

  5. Wolf, K. et al. Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nat. Cell Biol. 9, 893–904 (2007).

    Article  CAS  Google Scholar 

  6. Friedl, P. & Wolf, K. Plasticity of cell migration: a multiscale tuning mode. J. Cell Biol. 188, 11–19 (2010).

    Article  CAS  Google Scholar 

  7. Sanz-Moreno, V. et al. Rac activation and inactivation control plasticity of tumor cell movement. Cell 135, 510–523 (2008).

    Article  CAS  Google Scholar 

  8. Sanz-Moreno, V. & Marshall, C. J. The plasticity of cytoskeletal dynamics underlying neoplastic cell migration. Curr. Opin. Cell Biol. 22, 690–696 (2010).

    Article  CAS  Google Scholar 

  9. Wyckoff, J. B., Pinner, S. E., Gschmeissner, S., Condeelis, J. S. & Sahai, E. ROCK- and myosin-dependent matrix deformation enables protease-independent tumor-cell invasion in vivo. Curr. Biol. 16, 1515–1523 (2006).

    Article  CAS  Google Scholar 

  10. Wolf, K. et al. Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J. Cell Biol. 160, 267–277 (2003).

    Article  CAS  Google Scholar 

  11. Yamazaki, D., Kurisu, S. & Takenawa, T. Involvement of Rac and Rho signaling in cancer cell motility in 3D substrates. Oncogene 28, 1570–1583 (2009).

    Article  CAS  Google Scholar 

  12. Belgiovine, C. et al. Reduced expression of the ROCK inhibitor Rnd3 is associated with increased invasiveness and metastatic potential in mesenchymal tumor cells. PLoS One 30, e14154 (2010).

    Article  Google Scholar 

  13. Furlong, E. E., Andersen, E. C., Null, B., White, K. P. & Scott, M. P. Patterns of gene expression during Drosophila mesoderm development. Science 293, 1629–1633 (2001).

    Article  CAS  Google Scholar 

  14. Yang, J. et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117, 927–939 (2004).

    Article  CAS  Google Scholar 

  15. Yang, M. H. et al. Direct regulation of TWIST by HIF-1α promotes metastasis. Nat. Cell Biol. 10, 295–305 (2008).

    Article  CAS  Google Scholar 

  16. Yang, M. H. et al. Bmi1 is essential in Twist1-induced epithelial-mesenchymal transition. Nat. Cell Biol. 12, 982–992 (2010).

    Article  Google Scholar 

  17. Ma, L., Teruya-Feldstein, J. & Weinberg, R. A. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449, 682–688 (2007).

    Article  CAS  Google Scholar 

  18. Gregory, P. A. et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat. Cell Biol. 10, 593–601 (2008).

    Article  CAS  Google Scholar 

  19. Dykxhoorn, D. M. MicroRNAs and metastasis: little RNAs go a long way. Cancer Res. 70, 6401–6406 (2010).

    Article  CAS  Google Scholar 

  20. Yu, F. et al. let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131, 1109–1123 (2007).

    Article  CAS  Google Scholar 

  21. Rybak, A. et al. A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment. Nat. Cell Biol. 10, 987–993 (2008).

    Article  CAS  Google Scholar 

  22. Sampson, V. B. et al. MicroRNA let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells. Cancer Res. 67, 9762–9770 (2007).

    Article  CAS  Google Scholar 

  23. Lee, Y. S. & Dutta, A. The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes Dev. 21, 1025–1030 (2007).

    Article  CAS  Google Scholar 

  24. Prince, M. E. et al. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc. Natl Acad. Sci. USA 104, 973–978 (2007).

    Article  CAS  Google Scholar 

  25. Evan-Ram, S. & Yamada, K. M. Cell migration in 3D matrix. Curr. Opin. Cell Biol. 17, 524–532 (2005).

    Article  Google Scholar 

  26. Slorach, E. M., Chou, J. & Werb, Z. Zeppo1 is a metastasis promoter that represses E-cadherin expression and regulates p120-catenin isoform expression and localization. Genes Dev. 25, 471–484 (2011).

    Article  CAS  Google Scholar 

  27. Amano, M. et al. Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J. Biol. Chem. 271, 20246–20249 (1996).

    Article  CAS  Google Scholar 

  28. Croft, D. R. & Olson, M. F. Conditional regulation of a ROCK-estrogen receptor fusion protein. Methods Enzymol. 406, 541–553 (2006).

    Article  CAS  Google Scholar 

  29. Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

    Article  CAS  Google Scholar 

  30. Cabodi, S., del Pilar Camacho-Leal, M., Di Stefano, P. & Defilippi, P. Integrin signalling adaptors: not only figurants in the cancer story. Nat. Rev. Cancer 10, 858–870 (2010).

    Article  CAS  Google Scholar 

  31. Namekata, K., Enokido, Y., Iwasawa, K. & Kimura, H. MOCA induces membrane spreading by activating Rac1. J. Biol. Chem. 279, 14331–14337 (2004).

    Article  CAS  Google Scholar 

  32. Greene, F. L. et al. American Joint Committee on Cancer (AJCC) Cancer Staging Manual 6th edn 17–68 (Springer, 2002).

    Book  Google Scholar 

  33. Ansieau, S. et al. Induction of EMT by twist proteins as a collateral effect of tumor-promoting inactivation of premature senescence. Cancer Cell 14, 79–89 (2008).

    Article  CAS  Google Scholar 

  34. Chang, C. J. et al. Let-7d functions as regulator of epithelial-mesenchymal transition and chemoresistant property in oral cancer. Oncol. Rep. 26, 1003–1010 (2011).

    CAS  PubMed  Google Scholar 

  35. Peter, M. E. Let-7 and miR-200 microRNAs: guardians against pluripotency and cancer progression. Cell Cycle 8, 843–852 (2009).

    Article  CAS  Google Scholar 

  36. Panková, K., Rösel, D., Novotný, M. & Brábek, J. The molecular mechanisms of transition between mesenchymal and amoeboid invasiveness in tumor cells. Cell Mol. Life Sci. 67, 63–71 (2010).

    Article  Google Scholar 

  37. Garavello, W., Ciardo, A., Spreafico, R. & Gaini, R. M. Risk factors for distant metastases in head and neck squamous cell carcinoma. Arch. Otolaryngol. Head Neck Surg. 132, 762–766 (2006).

    Article  Google Scholar 

  38. Hsu, D. S. et al. Regulation of excision repair cross-complementation group 1 (ERCC1) by Snail contributes to cisplatin resistance in head and neck cancer. Clin. Cancer Res. 16, 4561–4571 (2010).

    Article  CAS  Google Scholar 

  39. Huang, C. C. et al. Regulation of membrane-type 4 matrix metalloproteinase (MT4-MMP) by SLUG contributes to hypoxia-mediated metastasis. Neoplasia 11, 1371–1382 (2009).

    Article  CAS  Google Scholar 

  40. N Namekata, K., Enokido, Y., Iwasaka, K. & Kimura, H. MOCA induces membrane spreading by activating Rac1. J. Biol. Chem. 279, 14331–14337 (2004).

    Article  Google Scholar 

  41. E Ebert, M. S., Neilson, J. R. & Sharp, P. A. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat. Methods 4, 721–726 (2007).

    Article  Google Scholar 

  42. O’Hara, S. P. et al. NFkappaB p50-CCAAT/enhancer-binding protein beta (C/EBPβ)-mediated transcriptional repression of microRNA let-7i following microbial infection. J. Biol. Chem. 285, 216–225 (2010).

    Article  Google Scholar 

  43. Chen, C. et al. Real-time quantification of microRNAs by stem–loop RT–PCR. Nucleic Acids Res. 33, e179 (2005).

    Article  Google Scholar 

  44. Pinner, S. & Sahai, E. PDK1 regulates cancer cell motility by antagonising inhibition of ROCK1 by RhoE. Nat. Cell Biol. 10, 127–137 (2008).

    Article  CAS  Google Scholar 

  45. Wilkinson, S., Paterson, H. F. & Marshall, C. J. Cdc42-MRCK and Rho-ROCK signalling cooperate in myosin phosphorylation and cell invasion. Nat. Cell Biol. 7, 255–261 (2005).

    Article  CAS  Google Scholar 

  46. Remmele, W. & Schicketanz, K. H. Immunohistochemical determination of estrogen and progesterone receptor content in human breast cancer. Computer-assisted image analysis (QIC score) vs. subjective grading (IRS). Pathol. Res. Pract. 189, 862–866 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. F. Olson (The Beaston Institute for Cancer Research, UK) for providing the ROCK–ER-WT and ROCK–ER-K121G plasmids, and H. Kimura (National Institute of Neuroscience, Tokyo, Japan) for the pCl–neo–DOCK3HA plasmid. We thank T. Z. Huang, Y. B. Khotskaya, C. W. Lee and S. S. Chang (M. D. Anderson Cancer Center, Texas, USA) for critical comments on the manuscript. We thank C. H. Lin and H. W. Liu (National Yang-Ming University, Taiwan) for supporting the time-lapse microscopy techniques. This work was supported by the National Health Research Institutes (NHRI-EX100-10037BI to M-H.Y.; NHRI-EX100-9931BI to K-J.W.); the National Science Council (NSC 99-2314-B-010-007-MY3 and 100-2321-B-010-015 to M-H.Y.; NSC 100-2321-B-039-002 to M-C.H.); Taipei Veterans General Hospital (VGH 100-C-088, 101-C-005 to M-H.Y.); Veterans General Hospitals University System of Taiwan Joint Research Program (VGHUST101-G7-4-1 to M-H.Y.); a grant from the Ministry of Education, Aim for the Top University Plan (to M-H.Y.); a grant from the Department of Health, Center of Excellence for Cancer Research (DOH100-TD-C-111-007 to M-H.Y; DOH101-TD-C-111-005 to M-C.H.); and the Sister Institution Fund of China Medical University and Hospital and MD Anderson Cancer Center.

Author information

Authors and Affiliations

Authors

Contributions

M-H.Y. and W-H.Y. conceived and designed the experiments. W-H.Y. and H-Y.L. carried out the experiments with the assistance of C-H.H for in vivo work. M-H.Y., W-H.Y. and H-Y.L. analysed the data. M-H.Y. wrote the paper with assistance from M-C.H. and K-J.W. The treatment and sample collection of HNSCC patients were carried out by S-K.T., C-H.T., S-Y.K. and M-H.Y.

Corresponding author

Correspondence to Muh-Hwa Yang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1689 kb)

Supplementary Table 1

Supplementary Information (XLSX 15 kb)

Supplementary Table 2

Supplementary Information (XLSX 12 kb)

Supplementary Table 3

Supplementary Information (XLSX 12 kb)

Supplementary Table 4

Supplementary Information (XLSX 11 kb)

Supplementary Table 5

Supplementary Information (XLSX 12 kb)

Supplementary Table 6

Supplementary Information (XLSX 13 kb)

Supplementary Table 7

Supplementary Information (XLSX 12 kb)

Supplementary Movie 1

Supplementary Information (AVI 3538 kb)

Supplementary Movie 2

Supplementary Information (AVI 7439 kb)

Supplementary Movie 3

Supplementary Information (AVI 7272 kb)

Supplementary Movie 4

Supplementary Information (AVI 1953 kb)

Supplementary Movie 5

Supplementary Information (AVI 3312 kb)

Supplementary Movie 6

Supplementary Information (AVI 7792 kb)

Supplementary Movie 7

Supplementary Information (AVI 3525 kb)

Supplementary Movie 8

Supplementary Information (AVI 1528 kb)

Supplementary Movie 9

Supplementary Information (AVI 3514 kb)

Supplementary Movie 10

Supplementary Information (AVI 3165 kb)

Supplementary Movie 11

Supplementary Information (AVI 2675 kb)

Supplementary Movie 12

Supplementary Information (AVI 2272 kb)

Supplementary Movie 13

Supplementary Information (AVI 5902 kb)

Supplementary Movie 14

Supplementary Information (AVI 4525 kb)

Supplementary Movie 15

Supplementary Information (AVI 1421 kb)

Supplementary Movie 16

Supplementary Information (AVI 1956 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, WH., Lan, HY., Huang, CH. et al. RAC1 activation mediates Twist1-induced cancer cell migration. Nat Cell Biol 14, 366–374 (2012). https://doi.org/10.1038/ncb2455

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2455

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer