Abstract
The Drosophila lymph gland is a haematopoietic organ in which progenitor cells, which are most akin to the common myeloid progenitor in mammals, proliferate and differentiate into three types of mature cell—plasmatocytes, crystal cells and lamellocytes—the functions of which are reminiscent of mammalian myeloid cells1. During the first and early second instars of larval development, the lymph gland contains only progenitors, whereas in the third instar, a medial region of the primary lobe of the lymph gland called the medullary zone contains these progenitors2, and maturing blood cells are found juxtaposed in a peripheral region designated the cortical zone2. A third group of cells referred to as the posterior signalling centre functions as a haematopoietic niche3,4. Similarly to mammalian myeloid cells, Drosophila blood cells respond to multiple stresses including hypoxia, infection and oxidative stress5,6,7. However, how systemic signals are sensed by myeloid progenitors to regulate cell-fate determination has not been well described. Here, we show that the haematopoietic progenitors of Drosophila are direct targets of systemic (insulin) and nutritional (essential amino acid) signals, and that these systemic signals maintain the progenitors by promoting Wingless (WNT in mammals) signalling. We expect that this study will promote investigation of such possible direct signal sensing mechanisms by mammalian myeloid progenitors.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
High-fat diet disturbs lipid raft/TGF-β signaling-mediated maintenance of hematopoietic stem cells in mouse bone marrow
Nature Communications Open Access 31 January 2019
-
Systemic control of immune cell development by integrated carbon dioxide and hypoxia chemosensation in Drosophila
Nature Communications Open Access 11 July 2018
-
Drosophila muscles regulate the immune response against wasp infection via carbohydrate metabolism
Scientific Reports Open Access 16 November 2017
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout





References
Meister, M. Blood cells of Drosophila: cell lineages and role in host defence. Curr. Opin. Immunol. 16, 10–15 (2004).
Jung, S. H., Evans, C. J., Uemura, C. & Banerjee, U. The Drosophila lymph gland as a developmental model of hematopoiesis. Development 132, 2521–2533 (2005).
Mandal, L., Martinez-Agosto, J. A., Evans, C. J., Hartenstein, V. & Banerjee, U. A Hedgehog- and Antennapedia-dependent niche maintains Drosophila haematopoietic precursors. Nature 446, 320–324 (2007).
Krzemien, J. et al. Control of blood cell homeostasis in Drosophila larvae by the posterior signalling centre. Nature 446, 325–328 (2007).
Mukherjee, T., Kim, W. S., Mandal, L. & Banerjee, U. Interaction between Notch and Hif-α in development and survival of Drosophila blood cells. Science 332, 1210–1213 (2011).
Lemaitre, B. & Hoffmann, J. The host defense of Drosophila melanogaster. Annu. Rev. Immunol. 25, 697–743 (2007).
Owusu-Ansah, E. & Banerjee, U. Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation. Nature 461, 537–541 (2009).
Nelson, R. E. et al. Peroxidasin: a novel enzyme-matrix protein of Drosophila development. EMBO J. 13, 3438–3447 (1994).
Goto, A. et al. A Drosophila haemocyte-specific protein, hemolectin, similar to human von Willebrand factor. Biochem. J. 359, 99–108 (2001).
Kocks, C. et al. Eater, a transmembrane protein mediating phagocytosis of bacterial pathogens in Drosophila. Cell 123, 335–346 (2005).
Becker, T. et al. FOXO-dependent regulation of innate immune homeostasis. Nature 463, 369–373 (2010).
Geminard, C., Rulifson, E. J. & Leopold, P. Remote control of insulin secretion by fat cells in Drosophila. Cell Metab. 10, 199–207 (2009).
Olefsky, J. M. & Glass, C. K. Macrophages, inflammation, and insulin resistance. Annu. Rev. Physiol. 72, 219–246 (2010).
Flores-Saaib, R. D., Jia, S. & Courey, A. J. Activation and repression by the C-terminal domain of Dorsal. Development 128, 1869–1879 (2001).
Tzou, P. et al. Tissue-specific inducible expression of antimicrobial peptide genes in Drosophila surface epithelia. Immunity 13, 737–748 (2000).
Bidla, G., Dushay, M. S. & Theopold, U. Crystal cell rupture after injury in Drosophila requires the JNK pathway, small GTPases and the TNF homolog Eiger. J. Cell Sci. 120, 1209–1215 (2007).
Rulifson, E. J., Kim, S. K. & Nusse, R. Ablation of insulin-producing neurons in flies: growth and diabetic phenotypes. Science 296, 1118–1120 (2002).
Ikeya, T., Galic, M., Belawat, P., Nairz, K. & Hafen, E. Nutrient-dependent expression of insulin-like peptides from neuroendocrine cells in the CNS contributes to growth regulation in Drosophila. Curr. Biol. 12, 1293–1300 (2002).
Zhang, H. et al. Deletion of Drosophila insulin-like peptides causes growth defects and metabolic abnormalities. Proc. Natl Acad. Sci. USA 106, 19617–19622 (2009).
Ren, D. et al. A prokaryotic voltage-gated sodium channel. Science 294, 2372–2375 (2001).
Bohni, R. et al. Autonomous control of cell and organ size by CHICO, a Drosophila homolog of vertebrate IRS1-4. Cell 97, 865–875 (1999).
Zhang, H., Stallock, J. P., Ng, J. C., Reinhard, C. & Neufeld, T. P. Regulation of cellular growth by the Drosophila target of rapamycin dTOR. Genes Dev. 14, 2712–2724 (2000).
Saucedo, L. J. et al. Rheb promotes cell growth as a component of the insulin/TOR signalling network. Nat. Cell Biol. 5, 566–571 (2003).
Lee, J. Y. et al. mTOR activation induces tumor suppressors that inhibit leukemogenesis and deplete hematopoietic stem cells after Pten deletion. Cell Stem Cell 7, 593–605 (2010).
Slaidina, M., Delanoue, R., Gronke, S., Partridge, L. & Leopold, P. A Drosophila insulin-like peptide promotes growth during nonfeeding states. Dev. Cell 17, 874–884 (2009).
Rutter, G. A. Nutrient-secretion coupling in the pancreatic islet β-cell: recent advances. Mol. Aspects Med. 22, 247–284 (2001).
Colombani, J. et al. A nutrient sensor mechanism controls Drosophila growth. Cell 114, 739–749 (2003).
Sinenko, S. A., Mandal, L., Martinez-Agosto, J. A. & Banerjee, U. Dual role of wingless signaling in stem-like hematopoietic precursor maintenance in Drosophila. Dev. Cell 16, 756–763 (2009).
Gregor, M. F. & Hotamisligil, G. S. Inflammatory mechanisms in obesity. Annu. Rev. Immunol. 29, 415–445 (2011).
Sousa-Nunes, R., Yee, L. L. & Gould, A. P. Fat cells reactivate quiescent neuroblasts via TOR and glial insulin relays in Drosophila. Nature 471, 508–512 (2011).
Chell, J. M. & Brand, A. H. Nutrition-responsive glia control exit of neural stem cells from quiescence. Cell 143, 1161–1173 (2010).
Choi, N. H., Lucchetta, E. & Ohlstein, B. Nonautonomous regulation of Drosophila midgut stem cell proliferation by the insulin-signaling pathway. Proc. Natl Acad. Sci. USA 108, 18702–18707 (2011).
Hsu, H. J. & Drummond-Barbosa, D. Insulin levels control female germline stem cell maintenance via the niche in Drosophila. Proc. Natl Acad. Sci. USA 106, 1117–1121 (2009).
McLeod, C. J., Wang, L., Wong, C. & Jones, D. L. Stem cell dynamics in response to nutrient availability. Curr. Biol. CB 20, 2100–2105 (2010).
O’Brien, L. E., Soliman, S. S., Li, X. & Bilder, D. Altered modes of stem cell division drive adaptive intestinal growth. Cell 147, 603–614 (2011).
Hotamisligil, G.S. Inflammation and metabolic disorders. Nature 444, 860–867 (2006).
Lebestky, T., Chang, T., Hartenstein, V. & Banerjee, U. Specification of Drosophila hematopoietic lineage by conserved transcription factors. Science 288, 146–149 (2000).
Zettervall, C. J. et al. A directed screen for genes involved in Drosophila blood cell activation. Proc. Natl Acad. Sci. USA 101, 14192–14197 (2004).
Hennig, K. M., Colombani, J. & Neufeld, T. P. TOR coordinates bulk and targeted endocytosis in the Drosophila melanogaster fat body to regulate cell growth. J. Cell Biol. 173, 963–974 (2006).
Acknowledgements
We thank C. J. Evans, K. T. Jones, other members of the Banerjee laboratory and J. A. Martinez-Agosto for helpful comments and discussions. We thank R. Erdmann for help with the amino-acid supplementation assay and S. Pham for confirming experiments with anti-Hml in different genetic backgrounds. We acknowledge P. Leopold, E. Hafen, E. Rulifson, L. Pick, T. P. Neufeld, R. A. Schulz, A. Courey, J-M. Reichhart, the VDRC Stock Center and the Bloomington Stock Center for fly stocks, the Developmental Studies Hybridoma Bank (University of Iowa), the Drosophila Genomics Resource Center and J. Fessler for reagents. We also thank M. Crozatiers’ group for providing the in situ hybridization protocol. This work was supported by an NIH grant (5R01 HL067395) to U.B. and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research Training Grant at UCLA to J.S.
Author information
Authors and Affiliations
Contributions
J.S designed and carried out experiments, and U.B. supervised the project. T.M. carried out experiments. J.S., T.M. and U.B. discussed and analysed results and wrote the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Supplementary Information (PDF 761 kb)
Rights and permissions
About this article
Cite this article
Shim, J., Mukherjee, T. & Banerjee, U. Direct sensing of systemic and nutritional signals by haematopoietic progenitors in Drosophila. Nat Cell Biol 14, 394–400 (2012). https://doi.org/10.1038/ncb2453
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/ncb2453
This article is cited by
-
Pharmacological intervention in young adolescents rescues synaptic physiology and behavioural deficits in Syngap1+/− mice
Experimental Brain Research (2022)
-
High-fat diet disturbs lipid raft/TGF-β signaling-mediated maintenance of hematopoietic stem cells in mouse bone marrow
Nature Communications (2019)
-
Systemic control of immune cell development by integrated carbon dioxide and hypoxia chemosensation in Drosophila
Nature Communications (2018)
-
Drosophila muscles regulate the immune response against wasp infection via carbohydrate metabolism
Scientific Reports (2017)
-
Vascular control of the Drosophila haematopoietic microenvironment by Slit/Robo signalling
Nature Communications (2016)