Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Flippase-mediated phospholipid asymmetry promotes fast Cdc42 recycling in dynamic maintenance of cell polarity

Abstract

Lipid asymmetry at the plasma membrane is essential for such processes as cell polarity, cytokinesis and phagocytosis1,2,3. Here we find that a lipid flippase complex, composed of Lem3, Dnf1 or Dnf2 (ref. 4), has a role in the dynamic recycling of the Cdc42 GTPase, a key regulator of cell polarity5, in yeast. By using quantitative microscopy methods, we show that the flippase complex is required for fast dissociation of Cdc42 from the polar cortex by the guanine nucleotide dissociation inhibitor. A loss of flippase activity, or pharmacological blockage of the inward flipping of phosphatidylethanolamine, a phospholipid with a neutral head group, disrupts Cdc42 polarity maintained by guanine nucleotide dissociation inhibitor-mediated recycling. Phosphatidylethanolamine flipping may reduce the charge interaction between a Cdc42 carboxy-terminal cationic region with the plasma membrane inner leaflet, enriched for the negatively charged lipid phosphatidylserine. Using a reconstituted system with supported lipid bilayers, we show that the relative composition of phosphatidylethanolamine versus phosphatidylserine directly modulates Cdc42 extraction from the membrane by guanine nucleotide dissociation inhibitor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Δlem3 suppresses the growth and Cdc42 localization defects due to RDI1 overexpression.
Figure 2: Lem3 regulates Rdi1-mediated Cdc42 internalization and polar-cap morphology.
Figure 3: The Lem3–Dnf1/Dnf2 complex regulates the polar Cdc42 dynamics and phosphatidylserine distribution.
Figure 4: The influence of the charge property of a Cdc42 carboxy-terminal region on Cdc42 dynamics.
Figure 5: Lipid composition directly regulates Rdi1-mediated Cdc42 extraction.

Similar content being viewed by others

References

  1. Iwamoto, K. et al. Local exposure of phosphatidylethanolamine on the yeast plasma membrane is implicated in cell polarity. Genes Cells 9, 891–903 (2004).

    Article  CAS  Google Scholar 

  2. Yeung, T. et al. Membrane phosphatidylserine regulates surface charge and protein localization. Science 319, 210–213 (2008).

    Article  CAS  Google Scholar 

  3. Emoto, K. & Umeda, M. An essential role for a membrane lipid in cytokinesis. Regulation of contractile ring disassembly by redistribution of phosphatidylethanolamine. J. Cell Biol. 149, 1215–1224 (2000).

    Article  CAS  Google Scholar 

  4. Pomorski, T. & Menon, A. K. Lipid flippases and their biological functions. Cell Mol. Life Sci. 63, 2908–2921 (2006).

    CAS  PubMed  Google Scholar 

  5. Etienne-Manneville, S. Cdc42—the centre of polarity. J. Cell Sci. 117, 1291–1300 (2004).

    Article  CAS  Google Scholar 

  6. Slaughter, B. D., Smith, S. E. & Li, R. Symmetry breaking in the life cycle of the budding yeast. Cold Spring Harb. Perspect Biol. 1, a003384 (2009).

    Article  Google Scholar 

  7. Wedlich-Soldner, R., Wai, S. C., Schmidt, T. & Li, R. Robust cell polarity is a dynamic state established by coupling transport and GTPase signaling. J. Cell Biol. 166, 889–900 (2004).

    Article  CAS  Google Scholar 

  8. Marco, E., Wedlich-Soldner, R., Li, R., Altschuler, S. J. & Wu, L. F. Endocytosis optimizes the dynamic localization of membrane proteins that regulate cortical polarity. Cell 129, 411–422 (2007).

    Article  CAS  Google Scholar 

  9. Slaughter, B. D., Das, A., Schwartz, J. W., Rubinstein, B. & Li, R. Dual modes of Cdc42 recycling fine-tune polarized morphogenesis. Dev. Cell 17, 823–835 (2009).

    Article  CAS  Google Scholar 

  10. Masuda, T. et al. Molecular cloning and characterization of yeast rho GDP dissociation inhibitor. J. Biol. Chem. 269, 19713–19718 (1994).

    CAS  PubMed  Google Scholar 

  11. DerMardirossian, C. & Bokoch, G. M. GDIs: central regulatory molecules in Rho GTPase activation. Trends Cell Biol. 15, 356–363 (2005).

    Article  CAS  Google Scholar 

  12. Johnson, J. L., Erickson, J. W. & Cerione, R. A. New insights into how the Rho guanine nucleotide dissociation inhibitor regulates the interaction of Cdc42 with membranes. J. Biol. Chem. 284, 23860–23871 (2009).

    Article  CAS  Google Scholar 

  13. Richman, T. J. et al. Analysis of cell-cycle specific localization of the Rdi1p RhoGDI and the structural determinants required for Cdc42p membrane localization and clustering at sites of polarized growth. Curr. Genet. 45, 339–349 (2004).

    Article  CAS  Google Scholar 

  14. Winzeler, E. A. et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285, 901–906 (1999).

    Article  CAS  Google Scholar 

  15. Pomorski, T. et al. Drs2p-related P-type ATPases Dnf1p and Dnf2p are required for phospholipid translocation across the yeast plasma membrane and serve a role in endocytosis. Mol. Biol. Cell. 14, 1240–1254 (2003).

    Article  CAS  Google Scholar 

  16. Kato, U. et al. A novel membrane protein, Ros3p, is required for phospholipid translocation across the plasma membrane in Saccharomyces cerevisiae. J. Biol. Chem. 277, 37855–37862 (2002).

    Article  CAS  Google Scholar 

  17. Saito, K. et al. Transbilayer phospholipid flipping regulates Cdc42p signaling during polarized cell growth via Rga GTPase-activating proteins. Dev. Cell 13, 743–751 (2007).

    Article  CAS  Google Scholar 

  18. Slaughter, B. D. & Li, R. Toward quantitative ‘in vivo biochemistry’ with fluorescence fluctuation spectroscopy. Mol. Biol. Cell 21, 4306–4311 (2010).

    Article  CAS  Google Scholar 

  19. Gibson, R. M. & Wilson-Delfosse, A. L. RhoGDI-binding-defective mutant of Cdc42Hs targets to membranes and activates filopodia formation but does not cycle with the cytosol of mammalian cells. Biochem. J. 359, 285–294 (2001).

    Article  CAS  Google Scholar 

  20. Grossmann, G. et al. Plasma membrane microdomains regulate turnover of transport proteins in yeast. J. Cell Biol. 183, 1075–1088 (2008).

    Article  CAS  Google Scholar 

  21. Ayscough, K. R. et al. High rates of actin filament turnover in budding yeast and roles for actin in establishment and maintenance of cell polarity revealed using the actin inhibitor latrunculin-A. J. Cell Biol. 137, 399–416 (1997).

    Article  CAS  Google Scholar 

  22. Aoki, Y., Uenaka, T., Aoki, J., Umeda, M. & Inoue, K. A novel peptide probe for studying the transbilayer movement of phosphatidylethanolamine. J. Biochem. 116, 291–297 (1994).

    Article  CAS  Google Scholar 

  23. Stevens, H. C., Malone, L. & Nichols, J. W. The putative aminophospholipid translocases, DNF1 and DNF2, are not required for 7-nitrobenz-2-oxa-1,3-diazol-4-yl-phosphatidylserine flip across the plasma membrane of Saccharomyces cerevisiae. J. Biol. Chem. 283, 35060–35069 (2008).

    Article  CAS  Google Scholar 

  24. Stefan, C. J., Audhya, A. & Emr, S. D. The yeast synaptojanin-like proteins control the cellular distribution of phosphatidylinositol (4,5)-bisphosphate. Mol. Biol. Cell 13, 542–557 (2002).

    Article  CAS  Google Scholar 

  25. Forget, M. A., Desrosiers, R. R., Gingras, D. & Beliveau, R. Phosphorylation states of Cdc42 and RhoA regulate their interactions with Rho GDP dissociation inhibitor and their extraction from biological membranes. Biochem. J. 361, 243–254 (2002).

    Article  CAS  Google Scholar 

  26. Griffin, B. A., Adams, S. R. & Tsien, R. Y. Specific covalent labeling of recombinant protein molecules inside live cells. Science 281, 269–272 (1998).

    Article  CAS  Google Scholar 

  27. Fairn, G. D., Hermansson, M., Somerharju, P. & Grinstein, S. Phosphatidylserine is polarized and required for proper Cdc42 localization and for development of cell polarity. Nat. Cell Biol. 13, 1424–1430 (2011).

    Article  CAS  Google Scholar 

  28. Caviston, J. P., Longtine, M., Pringle, J. R. & Bi, E. The role of Cdc42p GTPase-activating proteins in assembly of the septin ring in yeast. Mol. Biol. Cell 14, 4051–4066 (2003).

    Article  CAS  Google Scholar 

  29. Slaughter, B. D., Schwartz, J. W. & Li, R. Mapping dynamic protein interactions in MAP kinase signaling using live-cell fluorescence fluctuation spectroscopy and imaging. Proc. Natl Acad. Sci. USA 104, 20320–20325 (2007).

    Article  CAS  Google Scholar 

  30. Kim, S. A., Heinze, K. G. & Schwille, P. Fluorescence correlation spectroscopy in living cells. Nat. Methods 4, 963–973 (2007).

    Article  CAS  Google Scholar 

  31. Haupts, U., Maiti, S., Schwille, P. & Webb, W. W. Dynamics of fluorescence fluctuations in green fluorescent protein observed by fluorescence correlation spectroscopy. Proc. Natl Acad. Sci. USA 95, 13573–13578 (1998).

    Article  CAS  Google Scholar 

  32. Bevington, P. & Robinson, D. K. Data Reduction and Error Analysis for the Physical Sciences 3rd edn 194–218 (McGraw-Hill, 2003).

    Google Scholar 

  33. Thompson, N. L. Fluorescence Correlation Spectroscopy. Topics in Fluorescence Spectroscopy 337–378 (Plenum Press, 1991).

    Google Scholar 

  34. Coles, B. A. & Compton, R. G. Photoelectrochemical ESR. Part I. Experimental. J. Electroanal. Chem. Interfacial Electrochem. 144, 87–98 (1983).

    Article  CAS  Google Scholar 

  35. Daly, P. J., Page, D. J. & Compton, R. G. Mercury-plated rotating ring-disk electrode. Anal. Chem. 55, 1191–1192 (1983).

    Article  CAS  Google Scholar 

  36. Hess, S. T. & Webb, W. W. Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy. Biophys. J. 83, 2300–2317 (2002).

    Article  CAS  Google Scholar 

  37. Martin, B. R., Giepmans, B. N., Adams, S. R. & Tsien, R. Y. Mammalian cell-based optimization of the biarsenical-binding tetracysteine motif for improved fluorescence and affinity. Nat. Biotechnol. 23, 1308–1314 (2005).

    Article  CAS  Google Scholar 

  38. Goud, B., Salminen, A., Walworth, N. C. & Novick, P. J. A GTP-binding protein required for secretion rapidly associates with secretory vesicles and the plasma membrane in yeast. Cell 53, 753–768 (1988).

    Article  CAS  Google Scholar 

  39. Lee, K., Gallop, J. L., Rambani, K. & Kirschner, M. W. Self-assembly of filopodia-like structures on supported lipid bilayers. Science 329, 1341–1345 (2010).

    Article  CAS  Google Scholar 

  40. Poste, G., Papahadjopoulos, D. & Vail, W. J. In Methods in Cell Biology 34–72 (Academic Press, 1976).

    Google Scholar 

Download references

Acknowledgements

The authors thank W. Wiegraebe (Stowers Institute for Medical Research) for advice on imaging, K. Lee (Harvard Medical School) for advice on supported lipid bilayer preparation and N. Pavelka for assistance in genome screening data analysis. This study was done to fulfil, in part, requirements for A.D.’s PhD thesis as a student registered with the Open University. This work was supported by NIH grant RO1-GM057063 to R.L.

Author information

Authors and Affiliations

Authors

Contributions

A.D. and R.L. designed the experiments; A.D. carried out all experiments and prepared the manuscript, with help from B.D.S. and J.R.U.; R.A. and W.D.B. assisted in the whole genome screening; B.R. assisted in data analysis; R.L. conceived and supervised the project and revised the manuscript.

Corresponding author

Correspondence to Rong Li.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 444 kb)

Supplementary Table 1

Supplementary Information (XLSX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, A., Slaughter, B., Unruh, J. et al. Flippase-mediated phospholipid asymmetry promotes fast Cdc42 recycling in dynamic maintenance of cell polarity. Nat Cell Biol 14, 304–310 (2012). https://doi.org/10.1038/ncb2444

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2444

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing