Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A genome-wide homologous recombination screen identifies the RNA-binding protein RBMX as a component of the DNA-damage response


Repair of DNA double-strand breaks is critical to genomic stability and the prevention of developmental disorders and cancer. A central pathway for this repair is homologous recombination (HR). Most knowledge of HR is derived from work in prokaryotic and eukaryotic model organisms. We carried out a genome-wide siRNA-based screen in human cells. Among positive regulators of HR we identified networks of DNA-damage-response and pre-mRNA-processing proteins, and among negative regulators we identified a phosphatase network. Three candidate proteins localized to DNA lesions, including RBMX, a heterogeneous nuclear ribonucleoprotein that has a role in alternative splicing. RBMX accumulated at DNA lesions through multiple domains in a poly(ADP-ribose) polymerase 1-dependent manner and promoted HR by facilitating proper BRCA2 expression. Our screen also revealed that off-target depletion of RAD51 is a common source of RNAi false positives, raising a cautionary note for siRNA screens and RNAi-based studies of HR.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: A genome-wide siRNA-based screen for HR genes.
Figure 2: Rescreen and validation of candidate HR genes.
Figure 3: Off-target RAD51-depletion was a major source of false positives among Dharmacon siRNAs identified by the primary screen.
Figure 4: RBMX accumulates transiently at sites of DNA damage in a PARP-dependent manner.
Figure 5: RBMX promotes HR and resistance to DNA-damaging agents.
Figure 6: RBMX promotes formation of ionizing-radiation-induced RAD51 foci by facilitating proper expression of BRCA2.


  1. Ciccia, A. & Elledge, S. J. The DNA damage response: making it safe to play with knives. Mol. Cell 40, 179–204 (2010).

    Article  CAS  Google Scholar 

  2. Sartori, A. A. et al. Human CtIP promotes DNA end resection. Nature 450, 509–514 (2007).

    Article  CAS  Google Scholar 

  3. Bolderson, E. et al. Phosphorylation of Exo1 modulates homologous recombination repair of DNA double-strand breaks. Nucleic Acids Res. 38, 1821–1831 (2010).

    Article  CAS  Google Scholar 

  4. West, S. C. Molecular views of recombination proteins and their control. Nat. Rev. Mol. Cell Biol. 4, 435–445 (2003).

    Article  CAS  Google Scholar 

  5. San Filippo, J., Sung, P. & Klein, H. Mechanism of eukaryotic homologous recombination. Annu. Rev. Biochem. 77, 229–257 (2008).

    Article  CAS  Google Scholar 

  6. Heinrich, B. et al. Heterogeneous nuclear ribonucleoprotein G regulates splice site selection by binding to CC(A/C)-rich regions in pre-mRNA. J. Biol. Chem. 284, 14303–14315 (2009).

    Article  CAS  Google Scholar 

  7. Pierce, A. J., Johnson, R. D., Thompson, L. H. & Jasin, M. XRCC3 promotes homology-directed repair of DNA damage in mammalian cells. Genes Dev. 13, 2633–2638 (1999).

    Article  CAS  Google Scholar 

  8. Xia, B. et al. Control of BRCA2 cellular and clinical functions by a nuclear partner, PALB2. Mol. Cell 22, 719–729 (2006).

    Article  CAS  Google Scholar 

  9. Matsuoka, S. et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316, 1160–1166 (2007).

    Article  CAS  Google Scholar 

  10. Hurov, K. E., Cotta-Ramusino, C. & Elledge, S. J. A genetic screen identifies the Triple T complex required for DNA damage signaling and ATM and ATR stability. Genes Dev. 24, 1939–1950 (2010).

    Article  CAS  Google Scholar 

  11. Paulsen, R. D. et al. A genome-wide siRNA screen reveals diverse cellular processes and pathways that mediate genome stability. Mol. Cell 35, 228–239 (2009).

    Article  CAS  Google Scholar 

  12. Janknecht, R. Multi-talented DEAD-box proteins and potential tumor promoters: p68 RNA helicase (DDX5) and its paralog, p72 RNA helicase (DDX17). Am. J. Transl. Res. 2, 223–234 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Lorain, S. et al. Core histones and HIRIP3, a novel histone-binding protein, directly interact with WD repeat protein HIRA. Mol. Cell Biol. 18, 5546–5556 (1998).

    Article  CAS  Google Scholar 

  14. Sigoillot, F. D. et al. A bioinformatics method identifies prominent off-targeted transcripts in RNAi screens. Nat. Methods (in the press).

  15. Bartel, D. P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009).

    Article  CAS  Google Scholar 

  16. Sigoillot, F. D. & King, R. W. Vigilance and validation: keys to success in RNAi screening. ACS Chem. Biol. 6, 47–60 (2011).

    Article  CAS  Google Scholar 

  17. Mazeyrat, S., Saut, N., Mattei, M. G. & Mitchell, M. J. RBMY evolved on the Y chromosome from a ubiquitously transcribed X–Y identical gene. Nat. Genet. 22, 224–226 (1999).

    Article  CAS  Google Scholar 

  18. Lingenfelter, P. A. et al. Expression and conservation of processed copies of the RBMX gene. Mamm. Genome 12, 538–545 (2001).

    Article  CAS  Google Scholar 

  19. Elliott, D. J. The role of potential splicing factors including RBMY, RBMX, hnRNPG-T and STAR proteins in spermatogenesis. Int. J. Androl. 27, 328–334 (2004).

    Article  CAS  Google Scholar 

  20. Shin, K. H., Kang, M. K., Kim, R. H., Christensen, R. & Park, N. H. Heterogeneous nuclear ribonucleoprotein G shows tumor suppressive effect against oral squamous cell carcinoma cells. Clin. Cancer Res. 12, 3222–3228 (2006).

    Article  CAS  Google Scholar 

  21. Shin, K. H. et al. p53 promotes the fidelity of DNA end-joining activity by, in part, enhancing the expression of heterogeneous nuclear ribonucleoprotein G. DNA Repair 6, 830–840 (2007).

    Article  CAS  Google Scholar 

  22. Chou, D. M. et al. A chromatin localization screen reveals poly (ADP ribose)-regulated recruitment of the repressive polycomb and NuRD complexes to sites of DNA damage. Proc. Natl Acad. Sci. USA 107, 18475–18480 (2010).

    Article  CAS  Google Scholar 

  23. Polo, S. E., Kaidi, A., Baskcomb, L., Galanty, Y. & Jackson, S. P. Regulation of DNA-damage responses and cell-cycle progression by the chromatin remodelling factor CHD4. EMBO J. 29, 3130–3139 (2010).

    Article  CAS  Google Scholar 

  24. Cotta-Ramusino, C. et al. A DNA damage response screen identifies RHINO, a 9-1-1 and TopBP1 interacting protein required for ATR signaling. Science 332, 1313–1317 (2011).

    Article  CAS  Google Scholar 

  25. Smogorzewska, A. et al. A genetic screen identifies FAN1, a Fanconi anemia-associated nuclease necessary for DNA interstrand crosslink repair. Mol. Cell 39, 36–47 (2010).

    Article  CAS  Google Scholar 

  26. Pierce, A. J., Hu, P., Han, M., Ellis, N. & Jasin, M. Ku DNA end-binding protein modulates homologous repair of double-strand breaks in mammalian cells. Genes Dev. 15, 3237–3242 (2001).

    Article  CAS  Google Scholar 

  27. Draviam, V. M. et al. A functional genomic screen identifies a role for TAO1 kinase in spindle-checkpoint signalling. Nat. Cell Biol. 9, 556–564 (2007).

    Article  CAS  Google Scholar 

  28. Westhorpe, F. G., Diez, M. A., Gurden, M. D., Tighe, A. & Taylor, S. S. Re-evaluating the role of Tao1 in the spindle checkpoint. Chromosoma 119, 371–379 (2010).

    Article  CAS  Google Scholar 

  29. Hubner, N. C. et al. Re-examination of siRNA specificity questions role of PICH and Tao1 in the spindle checkpoint and identifies Mad2 as a sensitive target for small RNAs. Chromosoma 119, 149–165 (2010).

    Article  Google Scholar 

  30. Slabicki, M. et al. A genome-scale DNA repair RNAi screen identifies SPG48 as a novel gene associated with hereditary spastic paraplegia. PLoS Biol. 8, e1000408 (2010).

    Article  Google Scholar 

  31. Moumen, A., Masterson, P., O’Connor, M. J. & Jackson, S. P. hnRNP K: an HDM2 target and transcriptional coactivator of p53 in response to DNA damage. Cell 123, 1065–1078 (2005).

    Article  CAS  Google Scholar 

  32. Reinhardt, H. C. et al. DNA damage activates a spatially distinct late cytoplasmic cell-cycle checkpoint network controlled by MK2-mediated RNA stabilization. Mol. Cell 40, 34–49 (2010).

    Article  CAS  Google Scholar 

  33. Reinhardt, H. C., Cannell, I. G., Morandell, S. & Yaffe, M. B. Is post-transcriptional stabilization, splicing and translation of selective mRNAs a key to the DNA damage response? Cell Cycle 10, 23–27 (2011).

    Article  CAS  Google Scholar 

  34. Bekker-Jensen, S. et al. Spatial organization of the mammalian genome surveillance machinery in response to DNA strand breaks. J. Cell Biol. 173, 195–206 (2006).

    Article  CAS  Google Scholar 

  35. Smogorzewska, A. et al. Identification of the FANCI protein, a monoubiquitinated FANCD2 paralog required for DNA repair. Cell 129, 289–301 (2007).

    Article  CAS  Google Scholar 

Download references


We thank M. Jasin (Memorial Sloan-Kettering Cancer Center, USA) for DR-U2OS cells, P. Ng and F. Graham (McMaster University, Canada) for the AdNGUS24i, P. D. Adams (Institute of Cancer Sciences, CR-UK Beatson Labs, UK) for antibodies, S. J. Boulton (DNA Damage Response Laboratory, London Research Institute, UK) for the PARP inhibitor and C. Cotta-Ramusino and members of the Elledge laboratory for advice and discussion. We thank the Institute of Chemistry and Cell Biology (ICCB)-Longwood screening facility, including C. Shamu, S. Rudnicki, S. M. Johnston and T. Xie. This work was supported by a grant from the National Institutes of Health to S.J.E. A.S. was supported by T32CA09216 to the Pathology Department at the Massachusetts General Hospital and by Burroughs Wellcome Fund Career Award for Medical Scientists and is a Rita Allen Foundation and an Irma T. Hirschl scholar. S.J.E. is an investigator with the Howard Hughes Medical Institute.

Author information

Authors and Affiliations



B.A., A.S. and S.J.E. conceived experimental design and conducted data analysis. F.D.S. and R.W.K. carried out GESS analysis. The manuscript was prepared by B.A. and S.J.E. and edited by A.S., F.D.S. and R.W.K.

Corresponding author

Correspondence to Stephen J. Elledge.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 4811 kb)

Supplementary Table 1

Supplementary Information (XLSX 2365 kb)

Supplementary Table 2

Supplementary Information (XLSX 373 kb)

Supplementary Table 3

Supplementary Information (XLSX 167 kb)

Supplementary Table 4

Supplementary Information (XLSX 220 kb)

Supplementary Table 5

Supplementary Information (XLSX 37 kb)

Supplementary Table 6

Supplementary Information (XLSX 43 kb)

Supplementary Table 7

Supplementary Information (XLSX 40 kb)

Supplementary Table 8

Supplementary Information (XLSX 59 kb)

Supplementary Table 9

Supplementary Information (XLSX 52 kb)

Supplementary Table 10

Supplementary Information (XLSX 56 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Adamson, B., Smogorzewska, A., Sigoillot, F. et al. A genome-wide homologous recombination screen identifies the RNA-binding protein RBMX as a component of the DNA-damage response. Nat Cell Biol 14, 318–328 (2012).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing