Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Bridging membrane and cytoskeleton dynamics in the secretory and endocytic pathways

Abstract

Transport carriers regulate membrane flow between compartments of the secretory and endocytic pathways in eukaryotic cells. Carrier biogenesis is assisted by microtubules, actin filaments and their associated motors that link to membrane-associated coats, adaptors and accessory proteins. We summarize here how the biochemical properties of membranes inform their interactions with cytoskeletal regulators. We also discuss how the forces generated by the cytoskeleton and motor proteins alter the biophysical properties and the shape of membranes. The interplay between the cytoskeleton and membrane proteins ensures tight spatial and temporal control of carrier biogenesis, which is essential for cellular homeostasis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Models for carrier biogenesis at the plasma membrane and trans-Golgi network.
Figure 2: Early endosomal sorting and connections to the cytoskeleton.
Figure 3: Coordinated function of lipids and proteins in membrane bending, elongation and fission.

Similar content being viewed by others

References

  1. Hirokawa, N., Niwa, S. & Tanaka, Y. Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron 68, 610–638 (2010).

    CAS  PubMed  Google Scholar 

  2. Verhey, K. J. & Hammond, J. W. Traffic control: regulation of kinesin motors. Nat. Rev. Mol. Cell Biol. 10, 765–777 (2009).

    CAS  PubMed  Google Scholar 

  3. Hartman, M. A., Finan, D., Sivaramakrishnan, S. & Spudich, J. A. Principles of unconventional myosin function and targeting. Annu. Rev. Cell Dev. Biol. 27, 133–135 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Pfeffer, S. R. Unsolved mysteries in membrane traffic. Annu. Rev. Biochem. 76, 629–45 (2007).

    CAS  PubMed  Google Scholar 

  5. De Matteis, M. A. & Luini, A. Exiting the Golgi complex. Nat. Rev. Mol. Cell Biol. 9, 273–284 (2008).

    CAS  PubMed  Google Scholar 

  6. Bonifacino, J. S. & Rojas, R. Retrograde transport from endosomes to the trans-Golgi network. Nat. Rev. Mol. Cell Biol. 7, 568–579 (2006).

    CAS  PubMed  Google Scholar 

  7. Legendre-Guillemin, V., Wasiak, S., Hussain, N. K., Angers, A. & McPherson, P. S. ENTH/ANTH proteins and clathrin-mediated membrane budding. J. Cell Sci. 117, 9–18 (2004).

    CAS  PubMed  Google Scholar 

  8. Krauss, M. et al. Arf1-GTP-induced tubule formation suggests a function of Arf family proteins in curvature acquisition at sites of vesicle budding. J. Biol. Chem. 283, 27717–27723 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Di Paolo, G. & De Camilli, P. Phosphoinositides in cell regulation and membrane dynamics. Nature 443, 651–657 (2006).

    CAS  PubMed  Google Scholar 

  10. Vicinanza, M., D'Angelo, G., Di Campli, A. & De Matteis, M. A. Function and dysfunction of the PI system in membrane trafficking. EMBO J 27, 2457–2470 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Manneville, J. B. et al. COPI coat assembly occurs on liquid-disordered domains and the associated membrane deformations are limited by membrane tension. Proc. Natl Acad. Sci. USA 105, 16946–16951 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Romer, W. et al. Shiga toxin induces tubular membrane invaginations for its uptake into cells. Nature 450, 670–675 (2007).

    Article  PubMed  Google Scholar 

  13. Hansen, C. G., Bright, N. A., Howard, G. & Nichols, B. J. SDPR induces membrane curvature and functions in the formation of caveolae. Nat. Cell Biol. 11, 807–814 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Frick, M. et al. Coassembly of flotillins induces formation of membrane microdomains, membrane curvature, and vesicle budding. Curr. Biol. 17, 1151–156 (2007).

    CAS  PubMed  Google Scholar 

  15. Idrissi, F. Z. et al. Distinct acto/myosin-I structures associate with endocytic profiles at the plasma membrane. J. Cell Biol. 180, 1219–1232 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Collins, A., Warrington, A., Taylor, K. A. & Svitkina, T. Structural organization of the actin cytoskeleton at sites of clathrin-mediated endocytosis. Curr. Biol. 21, 1167–1175 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Kaksonen, M., Toret, C. P. & Drubin, D. G. A modular design for the clathrin- and actin-mediated endocytosis machinery. Cell 123, 305–320 (2005).

    CAS  PubMed  Google Scholar 

  18. Taylor, M. J., Perrais, D. & Merrifield, C. J. A high precision survey of the molecular dynamics of mammalian clathrin-mediated endocytosis. PLoS Biol. 9, e1000604 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Anitei, M. et al. Protein complexes containing CYFIP/Sra/PIR121 coordinate Arf1 and Rac1 signalling during clathrin-AP-1-coated carrier biogenesis at the TGN. Nat. Cell Biol. 12, 330–40 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Boulant, S., Kural, C., Zeeh, J. C., Ubelmann, F. & Kirchhausen, T. Actin dynamics counteract membrane tension during clathrin-mediated endocytosis. Nat. Cell Biol. 13, 1124–1131 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Aghamohammadzadeh, S. & Ayscough, K. R. Differential requirements for actin during yeast and mammalian endocytosis. Nat. Cell Biol. 11, 1039–1042 (2009).

    CAS  PubMed  Google Scholar 

  22. Dai, J. & Sheetz, M. P. Membrane tether formation from blebbing cells. Biophys. J. 77, 3363–7330 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Cureton, D. K., Massol, R. H., Whelan, S. P. & Kirchhausen, T. The length of vesicular stomatitis virus particles dictates a need for actin assembly during clathrin-dependent endocytosis. PLoS Pathog. 6, e1001127 (2010).

    PubMed  PubMed Central  Google Scholar 

  24. Poupon, V. et al. Clathrin light chains function in mannose phosphate receptor trafficking via regulation of actin assembly. Proc. Natl Acad. Sci. USA 105, 168–173 (2008).

    CAS  PubMed  Google Scholar 

  25. Engqvist-Goldstein, A. E. et al. RNAi-mediated Hip1R silencing results in stable association between the endocytic machinery and the actin assembly machinery. Mol. Biol. Cell 15, 1666–1679 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Carreno, S., Engqvist-Goldstein, A. E., Zhang, C. X., McDonald, K. L. & Drubin, D. G. Actin dynamics coupled to clathrin-coated vesicle formation at the trans-Golgi network. J. Cell Biol. 165, 781–788 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Saffarian, S., Cocucci, E. & Kirchhausen, T. Distinct dynamics of endocytic clathrin-coated pits and coated plaques. PLoS Biol. 7, e1000191 (2009).

    PubMed  PubMed Central  Google Scholar 

  28. von Blume, J. et al. ADF/cofilin regulates secretory cargo sorting at the TGN via the Ca(2+) ATPase SPCA1. Dev. Cell 20, 652–662 (2011).

    CAS  PubMed  Google Scholar 

  29. Pollard, T. D. Regulation of actin filament assembly by Arp2/3 complex and formins. Annu. Rev. Biophys. Biomol. Struct. 36, 451–477 (2007).

    CAS  PubMed  Google Scholar 

  30. Takenawa, T. & Suetsugu, S. The WASP–WAVE protein network: connecting the membrane to the cytoskeleton. Nat. Rev. Mol. Cell Biol. 8, 37–48 (2007).

    CAS  PubMed  Google Scholar 

  31. Rottner, K., Hanisch, J. & Campellone, K. G. WASH, WHAMM and JMY: regulation of Arp2/3 complex and beyond. Trends Cell Biol. 20, 650–661 (2010).

    CAS  PubMed  Google Scholar 

  32. Campellone, K. G., Webb, N. J., Znameroski, E. A. & Welch, M. D. WHAMM is an Arp2/3 complex activator that binds microtubules and functions in ER to Golgi transport. Cell 134, 148–161 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Gomez, T. S. & Billadeau, D. D. A FAM21-containing WASH complex regulates retromer-dependent sorting. Dev. Cell 17, 699–711 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Derivery, E. et al. The Arp2/3 activator WASH controls the fission of endosomes through a large multiprotein complex. Dev. Cell 17, 712–723 (2009).

    CAS  PubMed  Google Scholar 

  35. Carnell, M. et al. Actin polymerization driven by WASH causes V-ATPase retrieval and vesicle neutralization before exocytosis. J. Cell Biol. 193, 831–839 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Vicinanza, M. et al. OCRL controls trafficking through early endosomes via PtdIns4, 5P(2)-dependent regulation of endosomal actin. EMBO J. http://dx.doi.org/doi:10.1038/emboj.2011.354 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Fernandez-Borja, M., Janssen, L., Verwoerd, D., Hordijk, P. & Neefjes, J. RhoB regulates endosome transport by promoting actin assembly on endosomal membranes through Dia1. J. Cell Sci. 118, 2661–2670 (2005).

    CAS  PubMed  Google Scholar 

  38. Gasman, S., Kalaidzidis, Y. & Zerial, M. RhoD regulates endosome dynamics through Diaphanous-related Formin and Src tyrosine kinase. Nat. Cell Biol. 5, 195–204 (2003).

    CAS  PubMed  Google Scholar 

  39. Morel, E., Parton, R. G. & Gruenberg, J. Annexin A2-dependent polymerization of actin mediates endosome biogenesis. Dev. Cell 16, 445–457 (2009).

    CAS  PubMed  Google Scholar 

  40. Hussain, N. K. et al. Endocytic protein intersectin-l regulates actin assembly via Cdc42 and N-WASP. Nat. Cell Biol. 3, 927–932 (2001).

    CAS  PubMed  Google Scholar 

  41. Duncan, M. C., Cope, M. J., Goode, B. L., Wendland, B. & Drubin, D. G. Yeast Eps15-like endocytic protein, Pan1p, activates the Arp2/3 complex. Nat. Cell Biol. 3, 687–690 (2001).

    CAS  PubMed  Google Scholar 

  42. Casanova, J. E. Regulation of Arf activation: the Sec7 family of guanine nucleotide exchange factors. Traffic 8, 1476–1485 (2007).

    CAS  PubMed  Google Scholar 

  43. Inoue, H. & Randazzo, P. A. Arf GAPs and their interacting proteins. Traffic 8, 1465–1475 (2007).

    CAS  PubMed  Google Scholar 

  44. Myers, K. R. & Casanova, J. E. Regulation of actin cytoskeleton dynamics by Arf-family GTPases. Trends Cell Biol. 18, 184–92 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Baust, T., Czupalla, C., Krause, E., Bourel-Bonnet, L. & Hoflack, B. Proteomic analysis of adaptor protein 1A coats selectively assembled on liposomes. Proc. Natl Acad. Sci. USA 103, 3159–3164 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Dubois, T. et al. Golgi-localized GAP for Cdc42 functions downstream of ARF1 to control Arp2/3 complex and F-actin dynamics. Nat. Cell Biol. 7, 353–364 (2005).

    CAS  PubMed  Google Scholar 

  47. Chen, J. L., Lacomis, L., Erdjument-Bromage, H., Tempst, P. & Stamnes, M. Cytosol-derived proteins are sufficient for Arp2/3 recruitment and ARF/coatomer-dependent actin polymerization on Golgi membranes. FEBS Lett. 566, 281–286 (2004).

    CAS  PubMed  Google Scholar 

  48. Qualmann, B., Koch, D. & Kessels, M. M. Let's go bananas: revisiting the endocytic BAR code. EMBO J. 30, 3501–3515 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Frost, A. et al. Structural basis of membrane invagination by F-BAR domains. Cell 132, 807–817 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Henne, W. M. et al. FCHo proteins are nucleators of clathrin-mediated endocytosis. Science 328, 1281–1284 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Wu, M. et al. Coupling between clathrin-dependent endocytic budding and F-BAR-dependent tubulation in a cell-free system. Nat. Cell Biol. 12, 902–908 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Man, Z. et al. Arfaptins are localized to the trans-Golgi by interaction with Arl1, but not Arfs. J. Biol. Chem. 286, 11569–11578 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Ferguson, S. M. et al. Coordinated actions of actin and BAR proteins upstream of dynamin at endocytic clathrin-coated pits. Dev. Cell 17, 811–822 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Bu, W. et al. Cdc42 interaction with N-WASP and Toca-1 regulates membrane tubulation, vesicle formation and vesicle motility: implications for endocytosis. PLoS One 5, e12153 (2010).

    PubMed  PubMed Central  Google Scholar 

  55. Dharmalingam, E. et al. F-BAR proteins of the syndapin family shape the plasma membrane and are crucial for neuromorphogenesis. J. Neurosci. 29, 13315–13327 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Ho, H. Y. et al. Toca-1 mediates Cdc42-dependent actin nucleation by activating the N-WASP-WIP complex. Cell 118, 203–216 (2004).

    CAS  PubMed  Google Scholar 

  57. Takano, K., Toyooka, K. & Suetsugu, S. EFC/F-BAR proteins and the N-WASP-WIP complex induce membrane curvature-dependent actin polymerization. EMBO J. 27, 2817–2828 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Fricke, R. et al. Drosophila Cip4/Toca-1 integrates membrane trafficking and actin dynamics through WASP and SCAR/WAVE. Curr. Biol. 19, 1429–1437 (2009).

    CAS  PubMed  Google Scholar 

  59. Temkin, P. et al. SNX27 mediates retromer tubule entry and endosome-to-plasma membrane trafficking of signalling receptors. Nat. Cell Biol. 13, 717–723 (2011).

    CAS  Google Scholar 

  60. Liu, J., Sun, Y., Drubin, D. G. & Oster, G. F. The mechanochemistry of endocytosis. PLoS Biol. 7, e1000204 (2009).

    PubMed  PubMed Central  Google Scholar 

  61. Chang-Ileto, B. et al. Synaptojanin 1-mediated PI(4, 5)P2 hydrolysis is modulated by membrane curvature and facilitates membrane fission. Dev. Cell 20, 206–218 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Cestra, G., Kwiatkowski, A., Salazar, M., Gertler, F. & De Camilli, P. Tuba, a GEF for CDC42, links dynamin to actin regulatory proteins. Methods Enzymol. 404, 537–545 (2005).

    CAS  PubMed  Google Scholar 

  63. Billuart, P. et al. Oligophrenin-1 encodes a rhoGAP protein involved in X-linked mental retardation. Nature 392, 923–926 (1998).

    CAS  PubMed  Google Scholar 

  64. Ambroggio, E. et al. ArfGAP1 generates an Arf1 gradient on continuous lipid membranes displaying flat and curved regions. EMBO J. 29, 292–303 (2010).

    CAS  PubMed  Google Scholar 

  65. Geli, M. I. & Riezman, H. Role of type I myosins in receptor-mediated endocytosis in yeast. Science 272, 533–535 (1996).

    CAS  PubMed  Google Scholar 

  66. Akhmanova, A. & Hammer, J. A. III. Linking molecular motors to membrane cargo. Curr. Opin. Cell Biol. 22, 479–487 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Komaba, S. & Coluccio, L. M. Localization of myosin 1b to actin protrusions requires phosphoinositide binding. J. Biol. Chem. 285, 27686–27693 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Spudich, G. et al. Myosin VI targeting to clathrin-coated structures and dimerization is mediated by binding to Disabled-2 and PtdIns(4, 5)P2. Nat. Cell Biol. 9, 176–183 (2007).

    CAS  PubMed  Google Scholar 

  69. Arai, S., Noda, Y., Kainuma, S., Wada, I. & Yoda, K. Ypt11 functions in bud-directed transport of the Golgi by linking Myo2 to the coatomer subunit Ret2. Curr. Biol. 18, 987–991 (2008).

    CAS  PubMed  Google Scholar 

  70. Collaco, A., Jakab, R., Hegan, P., Mooseker, M. & Ameen, N. Alpha-AP-2 directs myosin VI-dependent endocytosis of cystic fibrosis transmembrane conductance regulator chloride channels in the intestine. J. Biol. Chem. 285, 17177–17187 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Stenmark, H. Rab GTPases as coordinators of vesicle traffic. Nat. Rev. Mol. Cell Biol. 10, 513–525 (2009).

    CAS  PubMed  Google Scholar 

  72. Hales, C. M. et al. Identification and characterization of a family of Rab11-interacting proteins. J. Biol. Chem. 276, 39067–39075 (2001).

    CAS  PubMed  Google Scholar 

  73. Santiago-Tirado, F. H., Legesse-Miller, A., Schott, D. & Bretscher, A. PI4P and Rab inputs collaborate in myosin-V-dependent transport of secretory compartments in yeast. Dev. Cell 20, 47–59 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Dippold, H. C. et al. GOLPH3 bridges phosphatidylinositol-4- phosphate and actomyosin to stretch and shape the Golgi to promote budding. Cell 139, 337–351 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Chibalina, M. V., Seaman, M. N., Miller, C. C., Kendrick-Jones, J. & Buss, F. Myosin VI and its interacting protein LMTK2 regulate tubule formation and transport to the endocytic recycling compartment. J. Cell Sci. 120, 4278–4288 (2007).

    CAS  PubMed  Google Scholar 

  76. Silva, M. S. et al. Active multistage coarsening of actin networks driven by myosin motors. Proc. Natl Acad. Sci. USA 108, 9408–9413 (2011).

    CAS  PubMed Central  Google Scholar 

  77. Almeida, C. G. et al. Myosin 1b promotes the formation of post-Golgi carriers by regulating actin assembly and membrane remodelling at the trans-Golgi network. Nat. Cell Biol. 13, 779–789 (2011).

    CAS  PubMed  Google Scholar 

  78. Sun, Y., Martin, A. C. & Drubin, D. G. Endocytic internalization in budding yeast requires coordinated actin nucleation and myosin motor activity. Dev. Cell 11, 33–46 (2006).

    CAS  PubMed  Google Scholar 

  79. Geli, M. I., Lombardi, R., Schmelzl, B. & Riezman, H. An intact SH3 domain is required for myosin I-induced actin polymerization. EMBO J. 19, 4281–4291 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Krendel, M., Osterweil, E. K. & Mooseker, M. S. Myosin 1E interacts with synaptojanin-1 and dynamin and is involved in endocytosis. FEBS Lett. 581, 644–650 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Arasada, R. & Pollard, T. D. Distinct roles for F-BAR proteins Cdc15p and Bzz1p in actin polymerization at sites of endocytosis in fission yeast. Curr. Biol. 21, 1450–1459 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Laakso, J. M., Lewis, J. H., Shuman, H. & Ostap, E. M. Myosin I can act as a molecular force sensor. Science 321, 133–136 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Chuan, P., Spudich, J. A. & Dunn, A. R. Robust mechanosensing and tension generation by myosin VI. J. Mol. Biol. 405, 105–112 (2011).

    CAS  PubMed  Google Scholar 

  84. Ishizaki, T. et al. Coordination of microtubules and the actin cytoskeleton by the Rho effector mDia1. Nat. Cell Biol. 3, 8–14 (2001).

    CAS  PubMed  Google Scholar 

  85. Hirokawa, N., Noda, Y., Tanaka, Y. & Niwa, S. Kinesin superfamily motor proteins and intracellular transport. Nat. Rev. Mol. Cell Biol. 10, 682–696 (2009).

    CAS  PubMed  Google Scholar 

  86. Klopfenstein, D. R., Tomishige, M., Stuurman, N. & Vale, R. D. Role of phosphatidylinositol(4, 5)bisphosphate organization in membrane transport by the Unc104 kinesin motor. Cell 109, 347–358 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Hoepfner, S. et al. Modulation of receptor recycling and degradation by the endosomal kinesin KIF16B. Cell 121, 437–450 (2005).

    CAS  PubMed  Google Scholar 

  88. Watson, P., Forster, R., Palmer, K. J., Pepperkok, R. & Stephens, D. J. Coupling of ER exit to microtubules through direct interaction of COPII with dynactin. Nat. Cell Biol. 7, 48–55 (2005).

    CAS  PubMed  Google Scholar 

  89. Chen, J. L. et al. Coatomer-bound Cdc42 regulates dynein recruitment to COPI vesicles. J. Cell Biol. 169, 383–389 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Nakagawa, T. et al. A novel motor, KIF13A, transports mannose-6-phosphate receptor to plasma membrane through direct interaction with AP-1 complex. Cell 103, 569–581 (2000).

    CAS  PubMed  Google Scholar 

  91. Wassmer, T. et al. The retromer coat complex coordinates endosomal sorting and dynein-mediated transport, with carrier recognition by the trans-Golgi network. Dev. Cell 17, 110–122 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Traer, C. J. et al. SNX4 coordinates endosomal sorting of TfnR with dynein-mediated transport into the endocytic recycling compartment. Nat. Cell Biol. 9, 1370–1380 (2007).

    CAS  PubMed  Google Scholar 

  93. Schonteich, E. et al. The Rip11/Rab11-FIP5 and kinesin II complex regulates endocytic protein recycling. J. Cell Sci. 121, 3824–3833 (2008).

    CAS  PubMed  Google Scholar 

  94. Horgan, C. P., Hanscom, S. R., Jolly, R. S., Futter, C. E. & McCaffrey, M. W. Rab11-FIP3 binds dynein light intermediate chain 2 and its overexpression fragments the Golgi complex. Biochem. Biophys. Res. Commun. 394, 387–392 (2010).

    CAS  PubMed  Google Scholar 

  95. Matanis, T. et al. Bicaudal-D regulates COPI-independent Golgi-ER transport by recruiting the dynein–dynactin motor complex. Nat. Cell Biol. 4, 986–992 (2002).

    CAS  PubMed  Google Scholar 

  96. Grigoriev, I. et al. Rab6 regulates transport and targeting of exocytotic carriers. Dev. Cell 13, 305–314 (2007).

    CAS  PubMed  Google Scholar 

  97. Roux, A. et al. A minimal system allowing tubulation with molecular motors pulling on giant liposomes. Proc. Natl Acad. Sci. USA 99, 5394–5399 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Leduc, C. et al. Cooperative extraction of membrane nanotubes by molecular motors. Proc. Natl Acad. Sci. USA 101, 17096–17101 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Koster, G., VanDuijn, M., Hofs, B. & Dogterom, M. Membrane tube formation from giant vesicles by dynamic association of motor proteins. Proc. Natl Acad. Sci. USA 100, 15583–15588 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Polishchuk, E. V., Di Pentima, A., Luini, A. & Polishchuk, R. S. Mechanism of constitutive export from the golgi: bulk flow via the formation, protrusion, and en bloc cleavage of large trans-Golgi network tubular domains. Mol. Biol. Cell 14, 4470–4485 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Waguri, S. et al. Visualization of TGN to endosome trafficking through fluorescently labeled MPR and AP-1 in living cells. Mol. Biol. Cell 14, 142–155 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Grigoriev, I. et al. STIM1 is a MT-plus-end-tracking protein involved in remodeling of the ER. Curr. Biol. 18, 177–182 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Waterman-Storer, C. M. & Salmon, E. D. Endoplasmic reticulum membrane tubules are distributed by microtubules in living cells using three distinct mechanisms. Curr. Biol. 8, 798–806 (1998).

    CAS  PubMed  Google Scholar 

  104. Lomakin, A. J. et al. CLIP-170-dependent capture of membrane organelles by microtubules initiates minus-end directed transport. Dev. Cell 17, 323–333 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Cai, D., McEwen, D. P., Martens, J. R., Meyhofer, E. & Verhey, K. J. Single molecule imaging reveals differences in microtubule track selection between kinesin motors. PLoS Biol. 7, e1000216 (2009).

    PubMed  PubMed Central  Google Scholar 

  106. Brawley, C. M. & Rock, R. S. Unconventional myosin traffic in cells reveals a selective actin cytoskeleton. Proc. Natl Acad. Sci. USA 106, 9685–9690 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Spiliotis, E. T., Hunt, S. J., Hu, Q., Kinoshita, M. & Nelson, W. J. Epithelial polarity requires septin coupling of vesicle transport to polyglutamylated microtubules. J. Cell Biol. 180, 295–303 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Pucadyil, T. J. & Schmid, S. L. Conserved functions of membrane active GTPases in coated vesicle formation. Science 325, 1217–1220 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Ramachandran, R. Vesicle scission: dynamin. Semin. Cell Dev. Biol. 22, 10–17 (2011).

    CAS  PubMed  Google Scholar 

  110. Bashkirov, P. V. et al. GTPase cycle of dynamin is coupled to membrane squeeze and release, leading to spontaneous fission. Cell 135, 1276–1286 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Pucadyil, T. J. & Schmid, S. L. Real-time visualization of dynamin-catalyzed membrane fission and vesicle release. Cell 135, 1263–1275 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Cao, H. et al. Cortactin is a component of clathrin-coated pits and participates in receptor-mediated endocytosis. Mol. Cell Biol. 23, 2162–2170 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Cao, H. et al. Actin and Arf1-dependent recruitment of a cortactin-dynamin complex to the Golgi regulates post-Golgi transport. Nat. Cell Biol. 7, 483–492 (2005).

    CAS  PubMed  Google Scholar 

  114. Itoh, T. et al. Dynamin and the actin cytoskeleton cooperatively regulate plasma membrane invagination by BAR and F-BAR proteins. Dev. Cell 9, 791–804 (2005).

    CAS  PubMed  Google Scholar 

  115. Gu, C. et al. Direct dynamin–actin interactions regulate the actin cytoskeleton. EMBO J. 29, 3593–3606 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Jonsdottir, G. A. & Li, R. Dynamics of yeast Myosin I: evidence for a possible role in scission of endocytic vesicles. Curr. Biol. 14, 1604–1609 (2004).

    CAS  PubMed  Google Scholar 

  117. Romer, W. et al. Actin dynamics drive membrane reorganization and scission in clathrin-independent endocytosis. Cell 140, 540–553 (2010).

    CAS  PubMed  Google Scholar 

  118. Miserey-Lenkei, S. et al. Rab and actomyosin-dependent fission of transport vesicles at the Golgi complex. Nat. Cell Biol. 12, 645–654 (2010).

    CAS  PubMed  Google Scholar 

  119. Soppina, V., Rai, A. K., Ramaiya, A. J., Barak, P. & Mallik, R. Tug-of-war between dissimilar teams of microtubule motors regulates transport and fission of endosomes. Proc. Natl Acad. Sci. USA 106, 19381–19386 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Mallik, R. & Gross, S. P. Molecular motors: strategies to get along. Curr. Biol. 14, R971–R982 (2004).

    CAS  PubMed  Google Scholar 

  121. Roux, A. et al. Role of curvature and phase transition in lipid sorting and fission of membrane tubules. EMBO J. 24, 1537–4155 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Allain, J. M., Storm, C., Roux, A., Ben Amar, M. & Joanny, J. F. Fission of a multiphase membrane tube. Phys. Rev. Lett. 93, 158104 (2004).

    PubMed  Google Scholar 

  123. Roux, A. et al. Membrane curvature controls dynamin polymerization. Proc. Natl Acad. Sci. USA 107, 4141–4146 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Zimmerberg, J. & Kozlov, M. M. How proteins produce cellular membrane curvature. Nat. Rev. Mol. Cell Biol. 7, 9–19 (2006).

    CAS  PubMed  Google Scholar 

  125. Yang, J. S. et al. COPI acts in both vesicular and tubular transport. Nat. Cell Biol. 13, 996–1003 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Asp, L. et al. Early stages of Golgi vesicle and tubule formation require diacylglycerol. Mol. Biol. Cell 20, 780–790 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Schmidt, J. A. & Brown, W. J. Lysophosphatidic acid acyltransferase 3 regulates Golgi complex structure and function. J. Cell Biol. 186, 211–218 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Sorre, B. et al. Curvature-driven lipid sorting needs proximity to a demixing point and is aided by proteins. Proc. Natl Acad. Sci. USA 106, 5622–5626 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Rozelle, A. L. et al. Phosphatidylinositol 4, 5-bisphosphate induces actin-based movement of raft-enriched vesicles through WASP-Arp2/3. Curr. Biol. 10, 311–320 (2000).

    CAS  PubMed  Google Scholar 

  130. San Pietro, E. et al. Group IV phospholipase A(2)alpha controls the formation of inter-cisternal continuities involved in intra-Golgi transport. PLoS Biol. 7, e1000194 (2009).

    PubMed  Google Scholar 

Download references

Acknowledgements

We apologize for not being able to quote the work of every group that contributed to our current understanding of the mechanisms described in this review. We thank M. Zerial, C. Antos, S. Pautot and E. Paluch and C. Stange for discussions and critical comments. Our research was mostly supported by grants from DFG (TRR 83/1-2010, HO 2584/1-1, HO 2584/2-1, HO 2584/6-1, HO 2584/8-1, HO 2584/9-1, HO 2584/1-2, HO2584/10-1), and partly by TU-Dresden.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Hoflack.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anitei, M., Hoflack, B. Bridging membrane and cytoskeleton dynamics in the secretory and endocytic pathways. Nat Cell Biol 14, 11–19 (2012). https://doi.org/10.1038/ncb2409

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2409

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing