Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Lessons from yeast for clathrin-mediated endocytosis

Abstract

Clathrin-mediated endocytosis (CME) is the major pathway for internalization of membrane proteins from the cell surface. Half a century of studies have uncovered tremendous insights into how a clathrin-coated vesicle is formed. More recently, the advent of live-cell imaging has provided a dynamic view of this process. As CME is highly conserved from yeast to humans, budding yeast provides an evolutionary template for this process and has been a valuable system for dissecting the underlying molecular mechanisms. In this review we trace the formation of a clathrin-coated vesicle from initiation to uncoating, focusing on key findings from the yeast system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Yeast endocytic factors are comprised of many conserved modular domains.
Figure 2: The endocytic pathway in yeast.
Figure 3: Regulation of Arp2/3-complex-mediated actin assembly during endocytosis.
Figure 4: Translating actin assembly into membrane invagination is regulated by clathrin light chain.

Similar content being viewed by others

References

  1. Roth, T. F. & Porter, K. R. Yolk protein uptake in the oocyte of the mosquito Aedes aegypti. J. Cell Biol. 20, 313–332 (1964).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Crowther, R. A., Finch, J. T. & Pearse, B. M. On the structure of coated vesicles. J. Mol. Biol. 103, 785–798 (1976).

    CAS  PubMed  Google Scholar 

  3. Pearse, B. M. Coated vesicles from pig brain: purification and biochemical characterization. J. Mol. Biol. 97, 93–98 (1975).

    CAS  PubMed  Google Scholar 

  4. Brodsky, F. M., Chen, C. Y., Knuehl, C., Towler, M. C. & Wakeham, D. E. Biological basket weaving: formation and function of clathrin-coated vesicles. Annu. Rev. Cell Dev. Biol. 17, 517–568 (2001).

    CAS  PubMed  Google Scholar 

  5. Raths, S., Rohrer, J., Crausaz, F. & Riezman, H. end3 and end4: two mutants defective in receptor-mediated and fluid-phase endocytosis in Saccharomyces cerevisiae. J. Cell Biol. 120, 55–65 (1993).

    CAS  PubMed  Google Scholar 

  6. Wendland, B., McCaffery, J. M., Xiao, Q. & Emr, S. D. A novel fluorescence-activated cell sorter-based screen for yeast endocytosis mutants identifies a yeast homologue of mammalian eps15. J. Cell Biol. 135, 1485–1500 (1996).

    CAS  PubMed  Google Scholar 

  7. Munn, A. L., Stevenson, B. J., Geli, M. I. & Riezman, H. end5, end6, and end7: mutations that cause actin delocalization and block the internalization step of endocytosis in Saccharomyces cerevisiae. Mol. Biol. Cell 6, 1721–1742 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Kubler, E. & Riezman, H. Actin and fimbrin are required for the internalization step of endocytosis in yeast. EMBO J. 12, 2855–2862 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Kaksonen, M., Sun, Y. & Drubin, D. G. A pathway for association of receptors, adaptors, and actin during endocytic internalization. Cell 115, 475–487 (2003).

    CAS  PubMed  Google Scholar 

  10. Kaksonen, M., Toret, C. P. & Drubin, D. G. A modular design for the clathrin- and actin-mediated endocytosis machinery. Cell 123, 305–320 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Newpher, T. M., Smith, R. P., Lemmon, V. & Lemmon, S. K. In vivo dynamics of clathrin and its adaptor-dependent recruitment to the actin-based endocytic machinery in yeast. Dev. Cell 9, 87–98 (2005).

    CAS  PubMed  Google Scholar 

  12. Sirotkin, V., Berro, J., Macmillan, K., Zhao, L. & Pollard, T. D. Quantitative analysis of the mechanism of endocytic actin patch assembly and disassembly in fission yeast. Mol. Biol. Cell 21, 2894–2904 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Idrissi, F. Z. et al. Distinct acto/myosin-I structures associate with endocytic profiles at the plasma membrane. J. Cell Biol. 180, 1219–1232 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Stefan, C. J., Audhya, A. & Emr, S. D. The yeast synaptojanin-like proteins control the cellular distribution of phosphatidylinositol (4, 5)-bisphosphate. Mol. Biol. Cell 13, 542–557 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Antonescu, C. N., Aguet, F., Danuser, G. & Schmid, S. L. Phosphatidylinositol-(4, 5)-bisphosphate regulates clathrin-coated pit initiation, stabilization, and size. Mol. Biol. Cell 22, 2588–2600 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Boettner, D. R. et al. The F-BAR protein Syp1 negatively regulates WASp-Arp2/3 complex activity during endocytic patch formation. Curr. Biol. 19, 1979–1987 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Reider, A. et al. Syp1 is a conserved endocytic adaptor that contains domains involved in cargo selection and membrane tubulation. EMBO J. 28, 3103–3116 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Stimpson, H. E., Toret, C. P., Cheng, A. T., Pauly, B. S. & Drubin, D. G. Early-arriving Syp1p and Ede1p function in endocytic site placement and formation in budding yeast. Mol. Biol. Cell 20, 4640–4651 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Toshima, J. Y. et al. Spatial dynamics of receptor-mediated endocytic trafficking in budding yeast revealed by using fluorescent alpha-factor derivatives. Proc. Natl Acad. Sci. USA 103, 5793–5798 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Newpher, T. M. & Lemmon, S. K. Clathrin is important for normal actin dynamics and progression of Sla2p-containing patches during endocytosis in yeast. Traffic 7, 574–588 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Toret, C. P., Lee, L., Sekiya-Kawasaki, M. & Drubin, D. G. Multiple pathways regulate endocytic coat disassembly in Saccharomyces cerevisiae for optimal downstream trafficking. Traffic 9, 848–859 (2008).

    CAS  PubMed  Google Scholar 

  22. Payne, G. S., Baker, D., van Tuinen, E. & Schekman, R. Protein transport to the vacuole and receptor-mediated endocytosis by clathrin heavy chain-deficient yeast. J. Cell Biol. 106, 1453–1461 (1988).

    CAS  PubMed  Google Scholar 

  23. Huang, K. M. et al. Novel functions of clathrin light chains: clathrin heavy chain trimerization is defective in light chain-deficient yeast. J. Cell Sci. 110, 899–910 (1997).

    CAS  PubMed  Google Scholar 

  24. Newpher, T. M., Idrissi, F. Z., Geli, M. I. & Lemmon, S. K. Novel function of clathrin light chain in promoting endocytic vesicle formation. Mol. Biol. Cell 17, 4343–4352 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Gagny, B. et al. A novel EH domain protein of Saccharomyces cerevisiae, Ede1p, involved in endocytosis. J. Cell Sci. 113, 3309–3319 (2000).

    CAS  PubMed  Google Scholar 

  26. Henne, W. M. et al. FCHo proteins are nucleators of clathrin-mediated endocytosis. Science 328, 1281–1284 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Dell'Angelica, E. C. Clathrin-binding proteins: got a motif? Join the network! Trends Cell Biol. 11, 315–318 (2001).

    CAS  PubMed  Google Scholar 

  28. Collette, J. R. et al. Clathrin functions in the absence of the terminal domain binding site for adaptor-associated clathrin-box motifs. Mol. Biol. Cell 20, 3401–3413 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Kang, D. S. et al. Structure of an arrestin2-clathrin complex reveals a novel clathrin binding domain that modulates receptor trafficking. J. Biol. Chem. 284, 29860–29872 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Willox, A. K. & Royle, S. J. Functional analysis of interaction sites on the N-terminal domain of clathrin heavy chain. Traffic 13, 70–81 (2011).

    PubMed  PubMed Central  Google Scholar 

  31. Carroll, S. Y. et al. A yeast killer toxin screen provides insights into a/b toxin entry, trafficking, and killing mechanisms. Dev. Cell 17, 552–560 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Huang, K. M., D'Hondt, K., Riezman, H. & Lemmon, S. K. Clathrin functions in the absence of heterotetrameric adaptors and AP180-related proteins in yeast. EMBO J. 18, 3897–3908 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Yeung, B. G., Phan, H. L. & Payne, G. S. Adaptor complex-independent clathrin function in yeast. Mol. Biol. Cell 10, 3643–3659 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Burston, H. E. et al. Regulators of yeast endocytosis identified by systematic quantitative analysis. J. Cell Biol. 185, 1097–1110 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Maldonado-Baez, L. et al. Interaction between Epsin/Yap180 adaptors and the scaffolds Ede1/Pan1 is required for endocytosis. Mol. Biol. Cell 19, 2936–2948 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Howard, J. P., Hutton, J. L., Olson, J. M. & Payne, G. S. Sla1p serves as the targeting signal recognition factor for NPFX(1, 2)D-mediated endocytosis. J. Cell Biol. 157, 315–326 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Piao, H. L., Machado, I. M. & Payne, G. S. NPFXD-mediated endocytosis is required for polarity and function of a yeast cell wall stress sensor. Mol. Biol. Cell 18, 57–65 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Di Pietro, S. M., Cascio, D., Feliciano, D., Bowie, J. U. & Payne, G. S. Regulation of clathrin adaptor function in endocytosis: novel role for the SAM domain. EMBO J. 29, 1033–1044 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Shih, S. C. et al. Epsins and Vps27p/Hrs contain ubiquitin-binding domains that function in receptor endocytosis. Nat. Cell Biol. 4, 389–393 (2002).

    CAS  PubMed  Google Scholar 

  40. Dores, M. R., Schnell, J. D., Maldonado-Baez, L., Wendland, B. & Hicke, L. The function of yeast epsin and Ede1 ubiquitin-binding domains during receptor internalization. Traffic 11, 151–160 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Stamenova, S. D. et al. Ubiquitin binds to and regulates a subset of SH3 domains. Mol. Cell 25, 273–284 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Moseley, J. B. & Goode, B. L. The yeast actin cytoskeleton: from cellular function to biochemical mechanism. Microbiol. Mol. Biol. Rev. 70, 605–645 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Jonsdottir, G. A. & Li, R. Dynamics of yeast Myosin I: evidence for a possible role in scission of endocytic vesicles. Curr. Biol. 14, 1604–1609 (2004).

    CAS  PubMed  Google Scholar 

  44. Sun, Y., Martin, A. C. & Drubin, D. G. Endocytic internalization in budding yeast requires coordinated actin nucleation and myosin motor activity. Dev. Cell 11, 33–46 (2006).

    CAS  PubMed  Google Scholar 

  45. Sirotkin, V., Beltzner, C. C., Marchand, J. B. & Pollard, T. D. Interactions of WASp, myosin-I, and verprolin with Arp2/3 complex during actin patch assembly in fission yeast. J. Cell Biol. 170, 637–648 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Toshima, J. et al. Negative regulation of yeast Eps15-like Arp2/3 complex activator, Pan1p, by the Hip1R-related protein, Sla2p, during endocytosis. Mol. Biol. Cell 18, 658–668 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Rodal, A. A., Manning, A. L., Goode, B. L. & Drubin, D. G. Negative regulation of yeast WASp by two SH3 domain-containing proteins. Curr. Biol. 13, 1000–1008 (2003).

    CAS  PubMed  Google Scholar 

  48. Soulard, A. et al. The WASP/Las17p-interacting protein Bzz1p functions with Myo5p in an early stage of endocytosis. Protoplasma 226, 89–101 (2005).

    CAS  PubMed  Google Scholar 

  49. Grotsch, H. et al. Calmodulin dissociation regulates Myo5 recruitment and function at endocytic sites. EMBO J. 29, 2899–2914 (2010).

    PubMed  PubMed Central  Google Scholar 

  50. Galletta, B. J., Chuang, D. Y. & Cooper, J. A. Distinct roles for Arp2/3 regulators in actin assembly and endocytosis. PLoS Biol. 6, e1 (2008).

    PubMed  PubMed Central  Google Scholar 

  51. Merrifield, C. J., Qualmann, B., Kessels, M. M. & Almers, W. Neural Wiskott Aldrich Syndrome Protein (N-WASP) and the Arp2/3 complex are recruited to sites of clathrin-mediated endocytosis in cultured fibroblasts. Eur. J. Cell Biol. 83, 13–18 (2004).

    CAS  PubMed  Google Scholar 

  52. Merrifield, C. J., Perrais, D. & Zenisek, D. Coupling between clathrin-coated-pit invagination, cortactin recruitment, and membrane scission observed in live cells. Cell 121, 593–606 (2005).

    CAS  PubMed  Google Scholar 

  53. Taylor, M. J., Perrais, D. & Merrifield, C. J. A high precision survey of the molecular dynamics of mammalian clathrin-mediated endocytosis. PLoS Biol. 9, e1000604 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Dharmalingam, E. et al. F-BAR proteins of the syndapin family shape the plasma membrane and are crucial for neuromorphogenesis. J. Neurosci. 29, 13315–13327 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Kessels, M. M. & Qualmann, B. Syndapin oligomers interconnect the machineries for endocytic vesicle formation and actin polymerization. J. Biol. Chem. 281, 13285–13299 (2006).

    CAS  PubMed  Google Scholar 

  56. Koch, D. et al. Proper synaptic vesicle formation and neuronal network activity critically rely on syndapin I. EMBO J. http://dx.doi.org/10.1038/emboj.2011.339 (2011).

  57. Rocca, D. L., Martin, S., Jenkins, E. L. & Hanley, J. G. Inhibition of Arp2/3-mediated actin polymerization by PICK1 regulates neuronal morphology and AMPA receptor endocytosis. Nat. Cell Biol. 10, 259–271 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Engqvist-Goldstein, A. E., Kessels, M. M., Chopra, V. S., Hayden, M. R. & Drubin, D. G. An actin-binding protein of the Sla2/Huntingtin interacting protein 1 family is a novel component of clathrin-coated pits and vesicles. J. Cell Biol. 147, 1503–1518 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Wesp, A. et al. End4p/Sla2p interacts with actin-associated proteins for endocytosis in Saccharomyces cerevisiae. Mol. Biol. Cell 8, 2291–2306 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Yang, S., Cope, M. J. & Drubin, D. G. Sla2p is associated with the yeast cortical actin cytoskeleton via redundant localization signals. Mol. Biol. Cell 10, 2265–2283 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Engqvist-Goldstein, A. E. et al. RNAi-mediated Hip1R silencing results in stable association between the endocytic machinery and the actin assembly machinery. Mol. Biol. Cell 15, 1666–1679 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Sun, Y., Carroll, S., Kaksonen, M., Toshima, J. Y. & Drubin, D. G. PtdIns(4, 5)P2 turnover is required for multiple stages during clathrin- and actin-dependent endocytic internalization. J. Cell Biol. 177, 355–367 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Sun, Y., Kaksonen, M., Madden, D. T., Schekman, R. & Drubin, D. G. Interaction of Sla2p's ANTH domain with PtdIns(4, 5)P2 is important for actin-dependent endocytic internalization. Mol. Biol. Cell 16, 717–730 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Gourlay, C. W. et al. An interaction between Sla1p and Sla2p plays a role in regulating actin dynamics and endocytosis in budding yeast. J. Cell Sci. 116, 2551–2564 (2003).

    CAS  PubMed  Google Scholar 

  65. Brett, T. J., Legendre-Guillemin, V., McPherson, P. S. & Fremont, D. H. Structural definition of the F-actin-binding THATCH domain from HIP1R. Nat. Struct. Mol. Biol. 13, 121–130 (2006).

    CAS  PubMed  Google Scholar 

  66. McCann, R. O. & Craig, S. W. The I/LWEQ module: a conserved sequence that signifies F-actin binding in functionally diverse proteins from yeast to mammals. Proc. Natl Acad. Sci. USA 94, 5679–5684 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Wilbur, J. D. et al. Actin binding by Hip1 (huntingtin-interacting protein 1) and Hip1R (Hip1-related protein) is regulated by clathrin light chain. J. Biol. Chem. 283, 32870–32879 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Engqvist-Goldstein, A. E. et al. The actin-binding protein Hip1R associates with clathrin during early stages of endocytosis and promotes clathrin assembly in vitro. J. Cell Biol. 154, 1209–1223 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Boettner, D. R., Friesen, H., Andrews, B. & Lemmon, S. K. Clathrin light chain directs endocytosis by influencing the binding of the yeast Hip1R homologue, Sla2, to F-actin. Mol. Biol. Cell 22, 3699–3714 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Baggett, J. J., D'Aquino, K. E. & Wendland, B. The Sla2p talin domain plays a role in endocytosis in Saccharomyces cerevisiae. Genetics 165, 1661–1674 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Smaczynska-de, R., II. et al. A role for the dynamin-like protein Vps1 during endocytosis in yeast. J. Cell Sci. 123, 3496–3506 (2010).

    Google Scholar 

  72. Youn, J. Y. et al. Dissecting BAR domain function in the yeast Amphiphysins Rvs161 and Rvs167 during endocytosis. Mol. Biol. Cell 21, 3054–3069 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Sever, S., Damke, H. & Schmid, S. L. Dynamin:GTP controls the formation of constricted coated pits, the rate limiting step in clathrin-mediated endocytosis. J. Cell Biol. 150, 1137–1148 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Nothwehr, S. F., Conibear, E. & Stevens, T. H. Golgi and vacuolar membrane proteins reach the vacuole in vps1 mutant yeast cells via the plasma membrane. J. Cell Biol. 129, 35–46 (1995).

    CAS  PubMed  Google Scholar 

  75. Nannapaneni, S. et al. The yeast dynamin-like protein Vps1:vps1 mutations perturb the internalization and the motility of endocytic vesicles and endosomes via disorganization of the actin cytoskeleton. Eur. J. Cell Biol. 89, 499–508 (2010).

    CAS  PubMed  Google Scholar 

  76. Liu, J., Sun, Y., Drubin, D. G. & Oster, G. F. The mechanochemistry of endocytosis. PLoS Biol. 7, e1000204 (2009).

    PubMed  PubMed Central  Google Scholar 

  77. Liu, J., Kaksonen, M., Drubin, D. G. & Oster, G. Endocytic vesicle scission by lipid phase boundary forces. Proc. Natl Acad. Sci. USA 103, 10277–10282 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Stefan, C. J., Padilla, S. M., Audhya, A. & Emr, S. D. The phosphoinositide phosphatase Sjl2 is recruited to cortical actin patches in the control of vesicle formation and fission during endocytosis. Mol. Cell Biol. 25, 2910–2923 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Singer-Kruger, B., Nemoto, Y., Daniell, L., Ferro-Novick, S. & De Camilli, P. Synaptojanin family members are implicated in endocytic membrane traffic in yeast. J. Cell Sci. 111, 3347–3356 (1998).

    CAS  PubMed  Google Scholar 

  80. Arasada, R. & Pollard, T. D. Distinct roles for F-BAR proteins Cdc15p and Bzz1p in actin polymerization at sites of endocytosis in fission yeast. Curr. Biol. 21, 1450–1459 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Kishimoto, T., Sun, Y., Buser, C., Liu, J., Michelot, A., Drubin, D. G. Determinants of endocytic membrane geometry, stability, and scission. Proc. Natl Acad. Sci. USA 44, E979–E988 (2011).

    Google Scholar 

  82. Ferguson, S. M. et al. Coordinated actions of actin and BAR proteins upstream of dynamin at endocytic clathrin-coated pits. Dev. Cell 17, 811–822 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Wu, M. et al. Coupling between clathrin-dependent endocytic budding and F-BAR-dependent tubulation in a cell-free system. Nat. Cell Biol. 12, 902–908 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Yamada, H. et al. Dynamic interaction of amphiphysin with N-WASP regulates actin assembly. J. Biol. Chem. 284, 34244–34256 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Cope, M. J., Yang, S., Shang, C. & Drubin, D. G. Novel protein kinases Ark1p and Prk1p associate with and regulate the cortical actin cytoskeleton in budding yeast. J. Cell Biol. 144, 1203–1218 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Smythe, E. & Ayscough, K. R. The Ark1/Prk1 family of protein kinases. Regulators of endocytosis and the actin skeleton. EMBO Rep. 4, 246–251 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Zeng, G., Huang, B., Neo, S. P., Wang, J. & Cai, M. Scd5p mediates phosphoregulation of actin and endocytosis by the type 1 phosphatase Glc7p in yeast. Mol. Biol. Cell 18, 4885–4898 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Jin, M. & Cai, M. A novel function of Arp2p in mediating Prk1p-specific regulation of actin and endocytosis in yeast. Mol. Biol. Cell 19, 297–307 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Huang, B., Zeng, G., Ng, A. Y. & Cai, M. Identification of novel recognition motifs and regulatory targets for the yeast actin-regulating kinase Prk1p. Mol. Biol. Cell 14, 4871–4884 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Watson, H. A., Cope, M. J., Groen, A. C., Drubin, D. G. & Wendland, B. In vivo role for actin-regulating kinases in endocytosis and yeast epsin phosphorylation. Mol. Biol. Cell 12, 3668–3679 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Henry, K. R. et al. The actin-regulating kinase Prk1p negatively regulates Scd5p, a suppressor of clathrin deficiency, in actin organization and endocytosis. Curr. Biol. 13, 1564–1569 (2003).

    CAS  PubMed  Google Scholar 

  92. Zeng, G., Yu, X. & Cai, M. Regulation of yeast actin cytoskeleton-regulatory complex Pan1p/Sla1p/End3p by serine/threonine kinase Prk1p. Mol. Biol. Cell 12, 3759–3772 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Zeng, G. & Cai, M. Regulation of the actin cytoskeleton organization in yeast by a novel serine/threonine kinase Prk1p. J. Cell Biol. 144, 71–82 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Breitkreutz, A. et al. A global protein kinase and phosphatase interaction network in yeast. Science 328, 1043–1046 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Sekiya-Kawasaki, M. et al. Dynamic phosphoregulation of the cortical actin cytoskeleton and endocytic machinery revealed by real-time chemical genetic analysis. J. Cell Biol. 162, 765–772 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Chang, J. S., Henry, K., Geli, M. I. & Lemmon, S. K. Cortical recruitment and nuclear-cytoplasmic shuttling of Scd5p, a protein phosphatase-1-targeting protein involved in actin organization and endocytosis. Mol. Biol. Cell 17, 251–262 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Toshima, J., Toshima, J. Y., Martin, A. C. & Drubin, D. G. Phosphoregulation of Arp2/3-dependent actin assembly during receptor-mediated endocytosis. Nat. Cell Biol. 7, 246–254 (2005).

    CAS  PubMed  Google Scholar 

  98. Chang, J. S., Henry, K., Wolf, B. L., Geli, M. & Lemmon, S. K. Protein phosphatase-1 binding to scd5p is important for regulation of actin organization and endocytosis in yeast. J. Biol. Chem. 277, 48002–48008 (2002).

    CAS  PubMed  Google Scholar 

  99. Henry, K. R. et al. Scd5p and clathrin function are important for cortical actin organization, endocytosis, and localization of sla2p in yeast. Mol. Biol. Cell 13, 2607–2625 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Tonikian, R. et al. Bayesian modeling of the yeast SH3 domain interactome predicts spatiotemporal dynamics of endocytosis proteins. PLoS Biol. 7, e1000218 (2009).

    PubMed  PubMed Central  Google Scholar 

  101. Honing, S. et al. Phosphatidylinositol-(4, 5)-bisphosphate regulates sorting signal recognition by the clathrin-associated adaptor complex AP2. Mol. Cell 18, 519–531 (2005).

    PubMed  Google Scholar 

  102. Jackson, L. P. et al. A large-scale conformational change couples membrane recruitment to cargo binding in the AP2 clathrin adaptor complex. Cell 141, 1220–1229 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Ricotta, D., Conner, S. D., Schmid, S. L., von Figura, K. & Honing, S. Phosphorylation of the AP2 mu subunit by AAK1 mediates high affinity binding to membrane protein sorting signals. J. Cell Biol. 156, 791–795 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Greener, T., Zhao, X., Nojima, H., Eisenberg, E. & Greene, L. E. Role of cyclin G-associated kinase in uncoating clathrin-coated vesicles from non-neuronal cells. J. Biol. Chem. 275, 1365–1370 (2000).

    CAS  PubMed  Google Scholar 

  105. Lee, D. W., Wu, X., Eisenberg, E. & Greene, L. E. Recruitment dynamics of GAK and auxilin to clathrin-coated pits during endocytosis. J. Cell Sci. 119, 3502–3512 (2006).

    CAS  PubMed  Google Scholar 

  106. Umeda, A., Meyerholz, A. & Ungewickell, E. Identification of the universal cofactor (auxilin 2) in clathrin coat dissociation. Eur. J. Cell Biol. 79, 336–342 (2000).

    CAS  PubMed  Google Scholar 

  107. Zhang, C. X. et al. Multiple roles for cyclin G-associated kinase in clathrin-mediated sorting events. Traffic 6, 1103–1113 (2005).

    CAS  PubMed  Google Scholar 

  108. Cousin, M. A., Tan, T. C. & Robinson, P. J. Protein phosphorylation is required for endocytosis in nerve terminals: potential role for the dephosphins dynamin I and synaptojanin, but not AP180 or amphiphysin. J. Neurochem. 76, 105–116 (2001).

    CAS  PubMed  Google Scholar 

  109. Lee, S. Y., Wenk, M. R., Kim, Y., Nairn, A. C. & De Camilli, P. Regulation of synaptojanin 1 by cyclin-dependent kinase 5 at synapses. Proc. Natl Acad. Sci. USA 101, 546–551 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Slepnev, V. I., Ochoa, G. C., Butler, M. H., Grabs, D. & De Camilli, P. Role of phosphorylation in regulation of the assembly of endocytic coat complexes. Science 281, 821–824 (1998).

    CAS  PubMed  Google Scholar 

  111. Tan, T. C. et al. Cdk5 is essential for synaptic vesicle endocytosis. Nat. Cell Biol. 5, 701–710 (2003).

    CAS  PubMed  Google Scholar 

  112. Okreglak, V. & Drubin, D. G. Cofilin recruitment and function during actin-mediated endocytosis dictated by actin nucleotide state. J. Cell Biol. 178, 1251–1264 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Lin, M. C., Galletta, B. J., Sept, D. & Cooper, J. A. Overlapping and distinct functions for cofilin, coronin and Aip1 in actin dynamics in vivo. J. Cell Sci. 123, 1329–1342 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Bobkov, A. A. et al. Cooperative effects of cofilin (ADF) on actin structure suggest allosteric mechanism of cofilin function. J. Mol. Biol. 356, 325–334 (2006).

    CAS  PubMed  Google Scholar 

  115. McGough, A., Pope, B., Chiu, W. & Weeds, A. Cofilin changes the twist of F-actin: implications for actin filament dynamics and cellular function. J. Cell. Biol. 138, 771–781 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Muhlrad, A. et al. Cofilin induced conformational changes in F-actin expose subdomain 2 to proteolysis. J. Mol. Biol. 342, 1559–1567 (2004).

    CAS  PubMed  Google Scholar 

  117. Balcer, H. I. et al. Coordinated regulation of actin filament turnover by a high-molecular-weight Srv2/CAP complex, cofilin, profilin, and Aip1. Curr. Biol. 13, 2159–2169 (2003).

    CAS  PubMed  Google Scholar 

  118. Okada, K., Ravi, H., Smith, E. M. & Goode, B. L. Aip1 and cofilin promote rapid turnover of yeast actin patches and cables: a coordinated mechanism for severing and capping filaments. Mol. Biol. Cell 17, 2855–2868 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Bertling, E., Quintero-Monzon, O., Mattila, P. K., Goode, B. L. & Lappalainen, P. Mechanism and biological role of profilin-Srv2/CAP interaction. J. Cell Sci. 120, 1225–1234 (2007).

    CAS  PubMed  Google Scholar 

  120. Quintero-Monzon, O. et al. Reconstitution and dissection of the 600-kDa Srv2/CAP complex: roles for oligomerization and cofilin-actin binding in driving actin turnover. J. Biol. Chem. 284, 10923–10934 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Chaudhry, F., Little, K., Talarico, L., Quintero-Monzon, O. & Goode, B. L. A central role for the WH2 domain of Srv2/CAP in recharging actin monomers to drive actin turnover in vitro and in vivo. Cytoskeleton (Hoboken) 67, 120–133 (2010).

    CAS  Google Scholar 

  122. Gandhi, M. et al. GMF is a cofilin homolog that binds Arp2/3 complex to stimulate filament debranching and inhibit actin nucleation. Curr. Biol. 20, 861–867 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Doyon, J. B. et al. Rapid and efficient clathrin-mediated endocytosis revealed in genome-edited mammalian cells. Nat. Cell Biol. 13, 331–337 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Batchelder, E. M. & Yarar, D. Differential requirements for clathrin-dependent endocytosis at sites of cell-substrate adhesion. Mol. Biol. Cell 21, 3070–3079 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Collins, A., Warrington, A., Taylor, K. A. & Svitkina, T. Structural organization of the actin cytoskeleton at sites of clathrin-mediated endocytosis. Curr. Biol. 21, 1167–1175 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Cureton, D. K., Massol, R. H., Saffarian, S., Kirchhausen, T. L. & Whelan, S. P. Vesicular stomatitis virus enters cells through vesicles incompletely coated with clathrin that depend upon actin for internalization. PLoS Pathog. 5, e1000394 (2009).

    PubMed  PubMed Central  Google Scholar 

  127. Saffarian, S., Cocucci, E. & Kirchhausen, T. Distinct dynamics of endocytic clathrin-coated pits and coated plaques. PLoS Biol. 7, e1000191 (2009).

    PubMed  PubMed Central  Google Scholar 

  128. Boulant, S., Kural, C., Zeeh, J. C., Ubelmann, F. & Kirchhausen, T. Actin dynamics counteract membrane tension during clathrin-mediated endocytosis. Nat. Cell Biol. 13, 1124–1131 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Liu, A. P., Loerke, D., Schmid, S. L. & Danuser, G. Global and local regulation of clathrin-coated pit dynamics detected on patterned substrates. Biophys. J. 97, 1038–1047 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Hohmann, S., Krantz, M. & Nordlander, B. Yeast osmoregulation. Methods Enzymol. 428, 29–45 (2007).

    CAS  PubMed  Google Scholar 

  131. Aghamohammadzadeh, S. & Ayscough, K. R. Differential requirements for actin during yeast and mammalian endocytosis. Nat. Cell Biol. 11, 1039–1042 (2009).

    CAS  PubMed  Google Scholar 

  132. Prosser, D. C., Drivas, T. G., Maldonado-Báez, L., Wendland, B. Existence of a novel clathrin-independent endocytic pathway in yeast that depends on Rho1 and formin. J. Cell Biol. 195, 657–671 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank J. A. Cooper and B. J. Galletta for insightful discussions, and C. Fahrenholtz for critical comments on the manuscript. This work was supported by grants and fellowships from the National Institutes of Health: F32-GM084677 (DRB), T32-HL07188 (RJC), F32-GM087900 (RJC), and R01-GM055796 (SKL). Finally, we apologize to colleagues whose work we were unable to cite in this brief review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra K. Lemmon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boettner, D., Chi, R. & Lemmon, S. Lessons from yeast for clathrin-mediated endocytosis. Nat Cell Biol 14, 2–10 (2012). https://doi.org/10.1038/ncb2403

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2403

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing