Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The GDI-like solubilizing factor PDEδ sustains the spatial organization and signalling of Ras family proteins

A Corrigendum to this article was published on 29 February 2012

This article has been updated


We identify a role for the GDI-like solubilizing factor (GSF) PDEδ in modulating signalling through Ras family G proteins by sustaining their dynamic distribution in cellular membranes. We show that the GDI-like pocket of PDEδ binds and solubilizes farnesylated Ras proteins, thereby enhancing their diffusion in the cytoplasm. This mechanism allows more effective trapping of depalmitoylated Ras proteins at the Golgi and polycationic Ras proteins at the plasma membrane to counter the entropic tendency to distribute these proteins over all intracellular membranes. Thus, PDEδ activity augments K/Hras signalling by enriching Ras at the plasma membrane; conversely, PDEδ down-modulation randomizes Ras distributions to all membranes in the cell and suppresses regulated signalling through wild-type Ras and also constitutive oncogenic Ras signalling in cancer cells. Our findings link the activity of PDEδ in determining Ras protein topography to Ras-dependent signalling.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: PDEδ affects the spatial distribution of palmitoylated Ras proteins.
Figure 2: Pharmacological intervention with the Ras acylation cycle affects PDEδ activity.
Figure 3: PDEδ enhances the effective diffusion of farnesylated Ras proteins.
Figure 4: PDEδ solubilizes polybasic-stretch-containing Ras proteins.
Figure 5: PDEδ solubilizes Kras from endomembranes.
Figure 6: PDEδ expression reinstates plasma membrane Ras localization and Ras-mediated signalling.
Figure 7: PDEδ modulates oncogenic Ras signalling.

Change history

  • 25 January 2012

    In the version of this article initially published online and in print, the y-axis label for the graph in Figure 6b was incorrect. The correct label for the axis is "Normalized Ras-GTP".


  1. 1

    Colicelli, J. Human RAS superfamily proteins and related GTPases. Sci. STKE 2004, RE13 (2004).

    PubMed  PubMed Central  Google Scholar 

  2. 2

    Goodwin, J. S. et al. Depalmitoylated Ras traffics to and from the Golgi complex via a nonvesicular pathway. J. Cell Biol. 170, 261–272 (2005).

    CAS  Article  Google Scholar 

  3. 3

    Rocks, O. et al. The palmitoylation machinery is a spatially organizing system for peripheral membrane proteins. Cell 141, 458–471 (2010).

    CAS  Article  Google Scholar 

  4. 4

    Rocks, O. et al. An acylation cycle regulates localization and activity of palmitoylated Ras isoforms. Science 307, 1746–1752 (2005).

    CAS  Article  Google Scholar 

  5. 5

    Dekker, F. J. et al. Small-molecule inhibition of APT1 affects Ras localization and signaling. Nat. Chem. Biol. 6, 449–456 (2010).

    CAS  Article  Google Scholar 

  6. 6

    Camp, L. A. & Hofmann, S. L. Purification and properties of a palmitoyl-protein thioesterase that cleaves palmitate from H-Ras. J. Biol. Chem. 268, 22566–22574 (1993).

    CAS  PubMed  Google Scholar 

  7. 7

    Sang, S. L. & Silvius, J. R. Novel thioester reagents afford efficient and specific S-acylation of unprotected peptides under mild conditions in aqueous solution. J. Pept. Res. 66, 169–180 (2005).

    Article  Google Scholar 

  8. 8

    Peyker, A., Rocks, O. & Bastiaens, P. I. Imaging activation of two Ras isoforms simultaneously in a single cell. ChemBioChem 6, 78–85 (2005).

    CAS  Article  Google Scholar 

  9. 9

    Hanzal-Bayer, M., Renault, L., Roversi, P., Wittinghofer, A. & Hillig, R. C. The complex of Arl2-GTP and PDE δ: from structure to function. EMBO J. 21, 2095–2106 (2002).

    CAS  Article  Google Scholar 

  10. 10

    Nancy, V., Callebaut, I., El Marjou, A. & de Gunzburg, J. The δ subunit of retinal rod cGMP phosphodiesterase regulates the membrane association of Ras and Rap GTPases. J. Biol. Chem. 277, 15076–15084 (2002).

    CAS  Article  Google Scholar 

  11. 11

    Paz, A., Haklai, R., Elad-Sfadia, G., Ballan, E. & Kloog, Y. Galectin-1 binds oncogenic H-Ras to mediate Ras membrane anchorage and cell transformation. Oncogene 20, 7486–7493 (2001).

    CAS  Article  Google Scholar 

  12. 12

    Elad-Sfadia, G., Haklai, R., Balan, E. & Kloog, Y. Galectin-3 augments K-Ras activation and triggers a Ras signal that attenuates ERK but not phosphoinositide 3-kinase activity. J. Biol. Chem. 279, 34922–34930 (2004).

    CAS  Article  Google Scholar 

  13. 13

    Florio, S. K., Prusti, R. K. & Beavo, J. A. Solubilization of membrane-bound rod phosphodiesterase by the rod phosphodiesterase recombinant δ subunit. J. Biol. Chem. 271, 24036–24047 (1996).

    CAS  Article  Google Scholar 

  14. 14

    Marzesco, A. M., Galli, T., Louvard, D. & Zahraoui, A. The rod cGMP phosphodiesterase δ subunit dissociates the small GTPase Rab13 from membranes. J. Biol. Chem. 273, 22340–22345 (1998).

    CAS  Article  Google Scholar 

  15. 15

    Zhang, H. et al. Deletion of PrBP/δ impedes transport of GRK1 and PDE6 catalytic subunits to photoreceptor outer segments. Proc. Natl Acad. Sci. USA 104, 8857–8862 (2007).

    CAS  Article  Google Scholar 

  16. 16

    Wilson, S. J. & Smyth, E. M. Internalization and recycling of the human prostacyclin receptor is modulated through its isoprenylation-dependent interaction with the δ subunit of cGMP phosphodiesterase 6. J. Biol. Chem. 281, 11780–11786 (2006).

    CAS  Article  Google Scholar 

  17. 17

    Bhagatji, P., Leventis, R., Rich, R., Lin, C. J. & Silvius, J. R. Multiple cellular proteins modulate the dynamics of K-ras association with the plasma membrane. Biophys. J. 99, 3327–3335 (2010).

    CAS  Article  Google Scholar 

  18. 18

    Chen, Y. X. et al. Synthesis of the Rheb and K-Ras4B GTPases. Angew Chem. Int. Ed. 49, 6090–6095 (2010).

    CAS  Article  Google Scholar 

  19. 19

    Griesbeck, O., Baird, G. S., Campbell, R. E., Zacharias, D. A. & Tsien, R. Y. Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications. J. Biol. Chem. 276, 29188–29194 (2001).

    CAS  Article  Google Scholar 

  20. 20

    Shaner, N. C. et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol. 22, 1567–1572 (2004).

    CAS  Article  Google Scholar 

  21. 21

    Apolloni, A., Prior, I. A., Lindsay, M., Parton, R. G. & Hancock, J. F. H-ras but not K-ras traffics to the plasma membrane through the exocytic pathway. Mol. Cell Biol. 20, 2475–2487 (2000).

    CAS  Article  Google Scholar 

  22. 22

    Choy, E. et al. Endomembrane trafficking of ras: the CAAX motif targets proteins to the ER and Golgi. Cell 98, 69–80 (1999).

    CAS  Article  Google Scholar 

  23. 23

    Drisdel, R. C. & Green, W. N. Labeling and quantifying sites of protein palmitoylation. Biotechniques 36, 276–285 (2004).

    CAS  Article  Google Scholar 

  24. 24

    Farrell, F. X., Yamamoto, K. & Lapetina, E. G. Prenyl group identification of rap2 proteins: a ras superfamily member other than ras that is farnesylated. Biochem. J. 289 (Pt 2), 349–355 (1993).

    Article  Google Scholar 

  25. 25

    Winegar, D. A., Molina y Vedia, L. & Lapetina, E. G. Isoprenylation of rap2 proteins in platelets and human erythroleukemia cells. J. Biol. Chem. 266, 4381–4386 (1991).

    CAS  PubMed  Google Scholar 

  26. 26

    Gosser, Y. Q. et al. C-terminal binding domain of Rho GDP-dissociation inhibitor directs N-terminal inhibitory peptide to GTPases. Nature 387, 814–819 (1997).

    CAS  Article  Google Scholar 

  27. 27

    Longenecker, K. et al. How RhoGDI binds Rho. Acta Crystallogr. D Biol. Crystallogr. 55, 1503–1515 (1999).

    CAS  Article  Google Scholar 

  28. 28

    Wouters, F. S., Verveer, P. J. & Bastiaens, P. I. Imaging biochemistry inside cells. Trends Cell Biol. 11, 203–211 (2001).

    CAS  Article  Google Scholar 

  29. 29

    Zhang, H. et al. Photoreceptor cGMP phosphodiesterase δ subunit (PDEδ) functions as a prenyl-binding protein. J. Biol. Chem. 279, 407–413 (2004).

    CAS  Article  Google Scholar 

  30. 30

    Webb, Y., Hermida-Matsumoto, L. & Resh, M. D. Inhibition of protein palmitoylation, raft localization, and T cell signaling by 2-bromopalmitate and polyunsaturated fatty acids. J. Biol. Chem. 275, 261–270 (2000).

    CAS  Article  Google Scholar 

  31. 31

    Patterson, G. H. & Lippincott-Schwartz, J. A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297, 1873–1877 (2002).

    CAS  Article  Google Scholar 

  32. 32

    Heo, W. D. et al. PI(3,4,5)P3 and PI(4,5)P2 lipids target proteins with polybasic clusters to the plasma membrane. Science 314, 1458–1461 (2006).

    CAS  Article  Google Scholar 

  33. 33

    Yeung, T. et al. Membrane phosphatidylserine regulates surface charge and protein localization. Science 319, 210–213 (2008).

    CAS  Article  Google Scholar 

  34. 34

    Yeung, T. et al. Contribution of phosphatidylserine to membrane surface charge and protein targeting during phagosome maturation. J. Cell Biol. 185, 917–928 (2009).

    CAS  Article  Google Scholar 

  35. 35

    Yeung, T. et al. Receptor activation alters inner surface potential during phagocytosis. Science 313, 347–351 (2006).

    CAS  Article  Google Scholar 

  36. 36

    Kim, J., Shishido, T., Jiang, X., Aderem, A. & McLaughlin, S. Phosphorylation, high ionic strength, and calmodulin reverse the binding of MARCKS to phospholipid vesicles. J. Biol. Chem. 269, 28214–28219 (1994).

    CAS  PubMed  Google Scholar 

  37. 37

    Bivona, T. G. et al. PKC regulates a farnesyl-electrostatic switch on K-Ras that promotes its association with Bcl-XL on mitochondria and induces apoptosis. Mol. Cell 21, 481–493 (2006).

    CAS  Article  Google Scholar 

  38. 38

    Lorentzen, A., Kinkhabwala, A., Rocks, O., Vartak, N. & Bastiaens, P. I. Regulation of Ras localization by acylation enables a mode of intracellular signal propagation. Sci. Signal 3, ra68 (2010).

    Article  Google Scholar 

  39. 39

    Richards, C. A., Short, S. A., Thorgeirsson, S. S. & Huber, B. E. Characterization of a transforming N-ras gene in the human hepatoma cell line Hep G2: additional evidence for the importance of c-myc and ras cooperation in hepatocarcinogenesis. Cancer Res. 50, 1521–1527 (1990).

    CAS  PubMed  Google Scholar 

  40. 40

    Tuveson, D. A. et al. Endogenous oncogenic K-ras(G12D) stimulates proliferationand widespread neoplastic and developmental defects. Cancer Cell 5, 375–387 (2004).

    CAS  Article  Google Scholar 

  41. 41

    Sarkisian, C. J. et al. Dose-dependent oncogene-induced senescence in vivo and its evasion during mammary tumorigenesis. Nat. Cell Biol. 9, 493–505 (2007).

    CAS  Article  Google Scholar 

  42. 42

    Hingorani, S. R. et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 4, 437–450 (2003).

    CAS  Article  Google Scholar 

  43. 43

    Hingorani, S. R. et al. Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 7, 469–483 (2005).

    CAS  Article  Google Scholar 

  44. 44

    Skoulidis, F. et al. Germline Brca2 heterozygosity promotes Kras(G12D)-driven carcinogenesis in a murine model of familial pancreatic cancer. Cancer Cell 18, 499–509 (2010).

    CAS  Article  Google Scholar 

  45. 45

    Gidekel Friedlander, S. Y. et al. Context-dependent transformation of adult pancreatic cells by oncogenic K-Ras. Cancer Cell 16, 379–389 (2009).

    Article  Google Scholar 

  46. 46

    Singh, A. et al. A gene expression signature associated with ‘K-Ras addiction’ reveals regulators of EMT and tumor cell survival. Cancer Cell 15, 489–500 (2009).

    CAS  Article  Google Scholar 

  47. 47

    Alexander, M. et al. Mapping the isoprenoid binding pocket of PDEδ by a semisynthetic, photoactivatable N-Ras lipoprotein. ChemBioChem 10, 98–108 (2009).

    CAS  Article  Google Scholar 

  48. 48

    van Meer, G., Voelker, D. R. & Feigenson, G. W. Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9, 112–124 (2008).

    CAS  Article  Google Scholar 

  49. 49

    Daleke, D. L. Regulation of transbilayer plasma membrane phospholipid asymmetry. J. Lipid Res. 44, 233–242 (2003).

    CAS  Article  Google Scholar 

  50. 50

    Williamson, P. & Schlegel, R. A. Back and forth: the regulation and function of transbilayer phospholipid movement in eukaryotic cells. Mol Membr. Biol. 11, 199–216 (1994).

    CAS  Article  Google Scholar 

  51. 51

    Lorenz, B. et al. Cloning and gene structure of the rod cGMPphosphodiesterase δ subunit gene (PDED) in man and mouse. Eur. J. Hum. Genet. 6, 283–290 (1998).

    CAS  Article  Google Scholar 

  52. 52

    Ismail, S. A. et al. Arl2-GTP and Arl3-GTP regulate a GDI-like transport system for farnesylated cargo. Nat Chem. Biol. 7, 942–949 (2011).

    CAS  Article  Google Scholar 

  53. 53

    Schreiber, F. S. et al. Successful growth and characterization of mouse pancreatic ductal cells: functional properties of the Ki-RAS(G12V) oncogene. Gastroenterology 127, 250–260 (2004).

    CAS  Article  Google Scholar 

  54. 54

    Varga, M. et al. Pancreatic resection for metastatic renal cell carcinoma. Klin. Onkol. 22, 288–290 (2009).

    CAS  PubMed  Google Scholar 

  55. 55

    Pfaffl, M. W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45 (2001).

    CAS  Article  Google Scholar 

  56. 56

    Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402–408 (2001).

    CAS  Article  Google Scholar 

  57. 57

    Politis, E. G., Roth, A. F. & Davis, N. G. Transmembrane topology of the protein palmitoyl transferase Akr1. J. Biol. Chem. 280, 10156–10163 (2005).

    CAS  Article  Google Scholar 

  58. 58

    Lopez, A., Dupou, L., Altibelli, A., Trotard, J. & Tocanne, J. F. Fluorescence recovery after photobleaching (FRAP) experiments under conditions of uniform disk illumination. Critical comparison of analytical solutions, and a new mathematical method for calculation of diffusion coefficient D. Biophys. J. 53, 963–970 (1988).

    CAS  Article  Google Scholar 

  59. 59

    Axelrod, D., Koppel, D. E., Schlessinger, J., Elson, E. & Webb, W. W. Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys. J. 16, 1055–1069 (1976).

    CAS  Article  Google Scholar 

  60. 60

    Elson, E. L. & Magde, D. Fluorescence correlation spectroscopy. I. Conceptual basis and theory. Biopolymers 13, 1–27 (1974).

    CAS  Article  Google Scholar 

  61. 61

    Grecco, H. E., Roda-Navarro, P. & Verveer, P. J. Global analysis of time correlated single photon counting FRET-FLIM data. Opt. Express 17, 6493–6508 (2009).

    CAS  Article  Google Scholar 

Download references


We thank D. Vogt and K. Michel for technical support, M. Schmick for assistance with FLAP data analysis, O. Sabet (Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, Dortmund, Germany) for providing mTFP–calreticulin, C. Schmees (Tumor Biology Group, NMI Natural Sciences and Medical Institute, Tübingen University, Reutlingen, Germany) for providing hTERT/SV40 cells and A. Krämer for help in preparing the manuscript.

Author information




A.C. carried out and analysed the experiments, H.E.G. analysed the FLIM data, A.C., V.P., D.P. and L.C. carried out colony-formation assays, F.S. provided mPDAC cells, S.A.I. provided intellectual input, C.H. provided palmostatin-B, M.H-B. provided valuable initial experiments, P.I.H.B. and A.W. conceived the project and P.I.H.B. wrote the paper with A.C. and A.R.V.

Corresponding author

Correspondence to Philippe I. H. Bastiaens.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1315 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chandra, A., Grecco, H., Pisupati, V. et al. The GDI-like solubilizing factor PDEδ sustains the spatial organization and signalling of Ras family proteins. Nat Cell Biol 14, 148–158 (2012).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing