Polarized cell growth in Arabidopsis requires endosomal recycling mediated by GBF1-related ARF exchange factors

Abstract

Polarized tip growth is a fundamental cellular process in many eukaryotic organisms, mediating growth of neuronal axons and dendrites1 or fungal hyphae2. In plants, pollen and root hairs are cellular model systems for analysing tip growth3,4,5. Cell growth depends on membrane traffic. The regulation of this membrane traffic is largely unknown for tip-growing cells, in contrast to cells exhibiting intercalary growth. Here we show that in Arabidopsis, GBF1-related exchange factors for the ARF GTPases (ARF GEFs) GNOM and GNL2 play essential roles in polar tip growth of root hairs and pollen, respectively. When expressed from the same promoter, GNL2 (in contrast to the early-secretory ARF GEF GNL1) is able to replace GNOM in polar recycling of the auxin efflux regulator PIN1 from endosomes to the basal plasma membrane in non-tip growing cells. Thus, polar recycling facilitates polar tip growth, and GNL2 seems to have evolved to meet the specific requirement of fast-growing pollen in higher plants.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Polarized tip growth depends on BFA-sensitive GBF1-related ARF GEFs.
Figure 2: Functional relationship of GBF-related ARF GEFs.
Figure 3: GNL2 mediates polar localization of pectin in pollen grains and pollen tubes.
Figure 4: Localized depositions of pectin in the intine layer are dependent on GNL2 action.
Figure 5: GNL2 is required for polar organization of the pollen tube.

References

  1. 1

    Tang, B. L. Emerging aspects of membrane traffic in neuronal dendrite growth. Biochim. Biophys. Acta 1783, 169–176 (2008).

    CAS  Article  Google Scholar 

  2. 2

    Steinberg, G. Hyphal growth: a tale of motors, lipids, and the Spitzenkorper. Eukaryot. Cell 6, 351–360 (2007).

    CAS  Article  Google Scholar 

  3. 3

    Hepler, P. K., Vidali, L. & Cheung, A. Y. Polarized cell growth in higher plants. Annu. Rev. Cell Dev. Biol. 17, 159–187 (2001).

    CAS  Article  Google Scholar 

  4. 4

    Campanoni, P. & Blatt, M. R. Membrane trafficking and polar growth in root hairs and pollen tubes. J. Exp. Bot. 58, 65–74 (2007).

    CAS  Article  Google Scholar 

  5. 5

    Ovecka, M. et al. Endocytosis and vesicle trafficking during tip growth of root hairs. Protoplasma 226, 39–54 (2005).

    CAS  Article  Google Scholar 

  6. 6

    Carol, R. J. & Dolan, L. Building a hair: tip growth in Arabidopsis thaliana root hairs. Phil. Trans. R. Soc. Lond. B 357, 815–821 (2002).

    CAS  Article  Google Scholar 

  7. 7

    Zhang, Y. & McCormick, S. The regulation of vesicle trafficking by small GTPases and phospholipids during pollen tube growth. Sex. Plant Reprod. 23, 87–93 (2010).

    Article  Google Scholar 

  8. 8

    Geldner, N. et al. The Arabidopsis GNOM ARF-GEF mediates endosomalrecycling, auxin transport, and auxin-dependent plant growth. Cell 112, 219–230 (2003).

    CAS  Article  Google Scholar 

  9. 9

    Renault, L., Guibert, B. & Cherfils, J. Structural snapshots of the mechanismand inhibition of a guanine nucleotide exchange factor. Nature 426, 525–530 (2003).

    CAS  Article  Google Scholar 

  10. 10

    Richter, S. et al. Functional diversification of closely related ARF-GEFs in protein secretion and recycling. Nature 448, 488–492 (2007).

    CAS  Article  Google Scholar 

  11. 11

    Teh, O. K. & Moore, I. An ARF-GEF acting at the Golgi and in selective endocytosis in polarized plant cells. Nature 448, 493–496 (2007).

    CAS  Article  Google Scholar 

  12. 12

    Fischer, U. et al. Vectorial information for Arabidopsis planar polarity ismediated by combined AUX1, EIN2, and GNOM activity. Curr. Biol. 16, 2143–2149 (2006).

    CAS  Article  Google Scholar 

  13. 13

    Bove, J. et al. Magnitude and direction of vesicle dynamics in growing pollen tubes using spatiotemporal image correlation spectroscopy and fluorescence recovery after photobleaching. Plant Physiol. 147, 1646–1658 (2008).

    CAS  Article  Google Scholar 

  14. 14

    Derksen, J. et al. Quantitative analysis of the distribution of organelles in tobacco pollen tubes: implications for exocytosis and endocytosis. Protoplasma 188, 267–276 (1995).

    Article  Google Scholar 

  15. 15

    Zonia, L. & Munnik, T. Vesicle trafficking dynamics and visualization of zones of exocytosis and endocytosis in tobacco pollen tubes. J. Exp. Bot. 59, 861–873 (2008).

    CAS  Article  Google Scholar 

  16. 16

    Moscatelli, A. & Idilli, A. I. Pollen tube growth: a delicate equilibrium between secretory and endocytic pathways. J. Integr. Plant Biol. 51, 727–739 (2009).

    CAS  Article  Google Scholar 

  17. 17

    Wang, Q. et al. Effects of brefeldin A on pollen germination and tube growth. Antagonistic effects on endocytosis and secretion. Plant Physiol. 139, 1692–1703 (2005).

    CAS  Article  Google Scholar 

  18. 18

    Honys, D. & Twell, D. Transcriptome analysis of haploid male gametophyte development in Arabidopsis. Genome Biol. 5, R85.1–R85.13 (2004).

    Article  Google Scholar 

  19. 19

    Parton, R. M., Fischer-Parton, S., Watahiki, M. K. & Trewavas, A. J. Dynamics of the apical vesicle accumulation and the rate of growth are related in individual pollen tubes. J. Cell Sci. 114, 2685–2695 (2001).

    CAS  PubMed  Google Scholar 

  20. 20

    Mayer, U., Büttner, G. & Jürgens, G. Apical-basal pattern formation in the Arabidopsis embryo: studies on the role of the gnom gene. Development 117, 149–162 (1993).

    Google Scholar 

  21. 21

    Jia, D. J. et al. GNOM-LIKE 2, encoding an adenosine diphosphate-ribosylation factor-guanine nucleotide exchange factor protein homologous to GNOM and GNL1, is essential for pollen germination in Arabidopsis. J. Integr. Plant Biol. 51, 762–773 (2009).

    CAS  Article  Google Scholar 

  22. 22

    Anders, N. et al. Membrane association of the Arabidopsis ARF exchange factor GNOM involves interaction of conserved domains. Plant Cell 20, 142–151 (2008).

    CAS  Article  Google Scholar 

  23. 23

    Naramoto, S. et al. ADP-ribosylation factor machinery mediates endocytosis in plant cells. Proc. Natl Acad. Sci. USA 107, 21890–21895 (2010).

    CAS  Article  Google Scholar 

  24. 24

    Geldner, N. et al. Partial loss-of-function alleles reveal a role for GNOM in auxin transport-related, post-embryonic development of Arabidopsis. Development 131, 389–400 (2004).

    CAS  Article  Google Scholar 

  25. 25

    Szumlanski, A. L. & Nielsen, E. The Rab GTPase RabA4d regulates pollen tube tip growth in Arabidopsis thaliana. Plant Cell 21, 526–544 (2009).

    CAS  Article  Google Scholar 

  26. 26

    Hou, W., Chang, W. & Jiang, C. Qualitative distinction of carboxyl group distributions in pectins with ruthenium red. Bot. Bull. Acad. Sin. 40, 115–119 (1999).

    CAS  Google Scholar 

  27. 27

    Preuss, D., Rhee, S. Y. & Davis, R. W. Tetrad analysis possible inArabidopsis with mutation of the QUARTET (QRT) genes. Science 264, 1458–1460 (1994).

    CAS  Article  Google Scholar 

  28. 28

    Rutherford, S. & Moore, I. The Arabidopsis Rab GTPase family: another enigma variation. Curr. Opin. Plant Biol. 5, 518–528 (2002).

    CAS  Article  Google Scholar 

  29. 29

    Geldner, N. et al. Rapid, combinatorial analysis of membrane compartments in intact plants with a multicolor marker set. Plant J. 59, 169–178 (2009).

    CAS  Article  Google Scholar 

  30. 30

    Zhang, Y., He, J., Lee, D. & McCormick, S. Interdependence of endomembrane trafficking and actin dynamics during polarized growth of Arabidopsis pollen tubes. Plant Physiol. 152, 2200–2210 (2010).

    CAS  Article  Google Scholar 

  31. 31

    Kang, B. H., Nielsen, E., Preuss, M. L., Mastronarde, D. & Staehelin, L. A. Electron tomography of RabA4b- and PI-4K β1-labeled trans Golgi network compartments in Arabidopsis. Traffic 12, 313–329 (2011).

    CAS  Article  Google Scholar 

  32. 32

    Dhonukshe, P. et al. Generation of cell polarity in plants links endocytosis, auxin distribution and cell fate decisions. Nature 456, 962–966 (2008).

    CAS  Article  Google Scholar 

  33. 33

    Reichardt, I. et al. Mechanisms of functional specificity among plasma-membrane syntaxins in Arabidopsis. Traffic 12, 1269–1280 (2011).

    CAS  Article  Google Scholar 

  34. 34

    Rudall, P. J. & Bateman, R. M. Developmental bases for key innovations in the seed-plant microgametophyte. Trends Plant Sci. 12, 317–326 (2007).

    CAS  Article  Google Scholar 

  35. 35

    Rios, G. et al. Rapid identification of Arabidopsis insertion mutants by non-radioactive detection of T-DNA tagged genes. Plant J. 32, 243–253 (2002).

    CAS  Article  Google Scholar 

  36. 36

    Takada, S. & Jürgens, G. Transcriptional regulation of epidermal cell fate in the Arabidopsis embryo. Development 134, 1141–1150 (2007).

    CAS  Article  Google Scholar 

  37. 37

    Lauber, M. H. et al. The Arabidopsis KNOLLE protein is a cytokinesis-specific syntaxin. J. Cell Biol. 139, 1485–1493 (1997).

    CAS  Article  Google Scholar 

  38. 38

    Müller, A. et al. AtPIN2 defines a locus of Arabidopsis for root gravitropism control. EMBO J. 17, 6903–6911 (1998).

    Article  Google Scholar 

  39. 39

    Boavida, L. C. & McCormick, S. Temperature as a determinant factor for increased and reproducible in vitro pollen germination in Arabidopsis thaliana. Plant J. 52, 570–582 (2007).

    CAS  Article  Google Scholar 

  40. 40

    Heslop-Harrison, J. & Heslop-Harrison, Y. Evaluation of pollen viability by enzymatically induced fluorescence; intracellular hydrolysis of fluorescein diacetate. Stain Technol. 45, 115–120 (1970).

    CAS  Article  Google Scholar 

  41. 41

    Reichardt, I. et al. Plant cytokinesis requires de novo secretory trafficking but not endocytosis. Curr. Biol. 17, 2047–2053 (2007).

    CAS  Article  Google Scholar 

  42. 42

    Preuss, M. L., Serna, J., Falbel, T. G., Bednarek, S. Y. & Nielsen, E. The Arabidopsis Rab GTPase RabA4b localizes to the tips of growing root hair cells. Plant Cell 16, 1589–1603 (2004).

    CAS  Article  Google Scholar 

  43. 43

    Huson, D. H. et al. Dendroscope: an interactive viewer for large phylogenetic trees. BMC Bioinform. 8, 460.1–460.6 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

We thank J. Keicher, R. Gavidia and B. Maier for technical assistance, C. Knöll for formatting of data files, D. G. Robinson and S. McCormick for providing materials and members of the laboratory for critical reading of the manuscript. This work was financially supported by the Deutsche Forschungsgemeinschaft through SFB 446 (TP A9).

Author information

Affiliations

Authors

Contributions

S.R. and G.J. planned the experiments. S.R. carried out most of the experiments. L.M.M. did the analysis of pollen germination. N.T. cloned some GNL2 constructs. Y.D.S. and U.M. carried out electron microscopy and assisted in light microscopy. C.K. isolated the gnl2 mutant and A.V. did initial work on gnl2. B.K. cloned the Hypo2 construct. N.G. initiated the project. All authors analysed and discussed the data; S.R. and G.J. wrote the paper.

Corresponding author

Correspondence to Gerd Jürgens.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1105 kb)

Supplementary Movie 1

Supplementary Information (MOV 1267 kb)

Supplementary Table 1

Supplementary Information (XLS 19 kb)

Supplementary Table 2

Supplementary Information (XLS 56 kb)

Supplementary Table 3

Supplementary Information (XLS 34 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Richter, S., Müller, L., Stierhof, YD. et al. Polarized cell growth in Arabidopsis requires endosomal recycling mediated by GBF1-related ARF exchange factors. Nat Cell Biol 14, 80–86 (2012). https://doi.org/10.1038/ncb2389

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing