Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The opposing transcriptional functions of Sin3a and c-Myc are required to maintain tissue homeostasis

Abstract

How the proto-oncogene c-Myc balances the processes of stem-cell self-renewal, proliferation and differentiation in adult tissues is largely unknown. We explored c-Myc’s transcriptional roles at the epidermal differentiation complex, a locus essential for skin maturation. Binding of c-Myc can simultaneously recruit (Klf4, Ovol-1) and displace (Cebpa, Mxi1 and Sin3a) specific sets of differentiation-specific transcriptional regulators to epidermal differentiation complex genes. We found that Sin3a causes deacetylation of c-Myc protein to directly repress c-Myc activity. In the absence of Sin3a, genomic recruitment of c-Myc to the epidermal differentiation complex is enhanced, and re-activation of c-Myc-target genes drives aberrant epidermal proliferation and differentiation. Simultaneous deletion of c-Myc and Sin3a reverts the skin phenotype to normal. Our results identify how the balance of two transcriptional key regulators can maintain tissue homeostasis through a negative feedback loop.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Myc regulates genes involved in epidermal differentiation.
Figure 2: Distinct expression profile for EDC genes in response to activated c-Myc.
Figure 3: Myc determines specific regulatory networks at the EDC.
Figure 4: Sin3a causes deacetylation of c-Myc, and loss of Sin3a in skin causes increased thickness of IFE and sebaceous glands.
Figure 5: Sin3a deletion causes epidermal proliferation and differentiation.
Figure 6: Reactivation of Myc-target genes in response to Sin3a deletion.
Figure 7: Deletion of c-Myc reverts proliferation and differentiation to normal in skin lacking Sin3a.

Similar content being viewed by others

References

  1. Eilers, M. & Eisenman, R. N. Myc’s broad reach. Genes Dev. 22, 2755–2766 (2008).

    Article  CAS  Google Scholar 

  2. Watt, F. M., Frye, M. & Benitah, S. A. MYC in mammalian epidermis: how can an oncogene stimulate differentiation? Nat. Rev. 8, 234–242 (2008).

    Article  CAS  Google Scholar 

  3. Sodir, N. M. & Evan, G. I. Nursing some sense out of Myc. J. Biol. 8, 77.1–77.4 (2009).

    Article  Google Scholar 

  4. Soucek, L. et al. Modelling Myc inhibition as a cancer therapy. Nature 455, 679–683 (2008).

    Article  CAS  Google Scholar 

  5. Wilson, A., Laurenti, E. & Trumpp, A. Balancing dormant and self-renewing hematopoietic stem cells. Curr. Opin. Genet. Dev. 19, 461–468 (2009).

    Article  CAS  Google Scholar 

  6. Habib, T. et al. Myc stimulates B lymphocyte differentiation and amplifies calcium signaling. J. Cell Biol. 179, 717–731 (2007).

    Article  CAS  Google Scholar 

  7. Conacci-Sorrell, M., Ngouenet, C. & Eisenman, R. N. Myc-nick: a cytoplasmic cleavage product of Myc that promotes α-tubulin acetylation and cell differentiation. Cell 142, 480–493 (2010).

    Article  CAS  Google Scholar 

  8. Stoelzle, T., Schwarb, P., Trumpp, A. & Hynes, N. E. c-Myc affects mRNA translation, cell proliferation and progenitor cell function in the mammary gland. BMC Biol. 7, 63–82 (2009).

    Article  Google Scholar 

  9. Muncan, V. et al. Rapid loss of intestinal crypts upon conditional deletion of the Wnt/Tcf-4 target gene c-Myc. Mol. Cell. Biol. 26, 8418–8426 (2006).

    Article  CAS  Google Scholar 

  10. Lawlor, E. R. et al. Reversible kinetic analysis of Myc targets in vivo provides novel insights into Myc-mediated tumorigenesis. Cancer Res. 66, 4591–4601 (2006).

    Article  CAS  Google Scholar 

  11. Frye, M., Gardner, C., Li, E. R., Arnold, I. & Watt, F. M. Evidence that Myc activation depletes the epidermal stem cell compartment by modulating adhesive interactions with the local microenvironment. Development 130, 2793–2808 (2003).

    Article  CAS  Google Scholar 

  12. Frye, M. & Watt, F. M. The RNA methyltransferase Misu (NSun2) mediatesMyc-induced proliferation and is upregulated in tumors. Curr. Biol. 16, 971–981 (2006).

    Article  CAS  Google Scholar 

  13. Arnold, I. & Watt, F. M. c-Myc activation in transgenic mouse epidermis results in mobilization of stem cells and differentiation of their progeny. Curr. Biol. 11, 558–568 (2001).

    Article  CAS  Google Scholar 

  14. Cole, M. D. & Cowling, V. H. Transcription-independent functions of MYC:regulation of translation and DNA replication. Nat. Rev. Mol. Cell Biol. 9, 810–815 (2008).

    Article  CAS  Google Scholar 

  15. Cowling, V. H. & Cole, M. D. The Myc transactivation domain promotes global phosphorylation of the RNA polymerase II carboxy-terminal domain independently of direct DNA binding. Mol. Cell. Biol. 27, 2059–2073 (2007).

    Article  CAS  Google Scholar 

  16. Rahl, P. B. et al. c-Myc regulates transcriptional pause release. Cell 141, 432–445 (2010).

    Article  CAS  Google Scholar 

  17. Guccione, E. et al. Myc-binding-site recognition in the human genome is determined by chromatin context. Nat. Cell Biol. 8, 764–770 (2006).

    Article  CAS  Google Scholar 

  18. Kim, J., Chu, J., Shen, X., Wang, J. & Orkin, S. H. An extendedtranscriptional network for pluripotency of embryonic stem cells. Cell 132, 1049–1061 (2008).

    Article  CAS  Google Scholar 

  19. Fuchs, E. Finding one’s niche in the skin. Cell Stem Cell 4, 499–502 (2009).

    Article  CAS  Google Scholar 

  20. Marenholz, I. et al. Genetic analysis of the epidermal differentiation complex (EDC) on human chromosome 1q21: chromosomal orientation, new markers, and a 6-Mb YAC contig. Genomics 37, 295–302 (1996).

    Article  CAS  Google Scholar 

  21. Volz, A. et al. Physical mapping of a functional cluster of epidermal differentiation genes on chromosome 1q21. Genomics 18, 92–99 (1993).

    Article  CAS  Google Scholar 

  22. Wang, X., Pasolli, H. A., Williams, T. & Fuchs, E. AP-2 factors act in concert with Notch to orchestrate terminal differentiation in skin epidermis. J. Cell Biol. 183, 37–48 (2008).

    Article  CAS  Google Scholar 

  23. Lopez, R. G. et al. C/EBPα and β couple interfollicular keratinocyte proliferation arrest to commitment and terminal differentiation. Nat. Cell Biol. 11, 1181–1190 (2009).

    Article  CAS  Google Scholar 

  24. Nair, M. et al. Ovol1 regulates the growth arrest of embryonic epidermalprogenitor cells and represses c-myc transcription. J. Cell Biol. 173, 253–264 (2006).

    Article  CAS  Google Scholar 

  25. Wells, J. et al. Ovol2 suppresses cell cycling and terminal differentiation of keratinocytes by directly repressing c-Myc and Notch1. J. Biol. Chem. 284, 29125–29135 (2009).

    Article  CAS  Google Scholar 

  26. Segre, J. A., Bauer, C. & Fuchs, E. Klf4 is a transcription factorrequired for establishing the barrier function of the skin. Nat. Genet. 22, 356–360 (1999).

    Article  CAS  Google Scholar 

  27. Hurlin, P. J. et al. Mad3 and Mad4: novel Max-interacting transcriptional repressors that suppress c-myc dependent transformation and are expressed during neural and epidermal differentiation. EMBO J. 14, 5646–5659 (1995).

    Article  CAS  Google Scholar 

  28. Hurlin, P. J. et al. Regulation of Myc and Mad during epidermal differentiation and HPV-associated tumorigenesis. Oncogene 11, 2487–2501 (1995).

    CAS  PubMed  Google Scholar 

  29. Klose, R. J. et al. The retinoblastoma binding protein RBP2 is an H3K4 demethylase. Cell 128, 889–900 (2007).

    Article  CAS  Google Scholar 

  30. Blackwood, E. M. & Eisenman, R. N. Max: a helix–loop–helix zipper protein that forms a sequence-specific DNA-binding complex with Myc. Science 251, 1211–1217 (1991).

    Article  CAS  Google Scholar 

  31. Prendergast, G. C., Lawe, D. & Ziff, E. B. Association of Myn, the murine homolog of max, with c-Myc stimulates methylation-sensitive DNA binding and ras cotransformation. Cell 65, 395–407 (1991).

    Article  CAS  Google Scholar 

  32. McMahon, S. B., Wood, M. A. & Cole, M. D. The essential cofactor TRRAPrecruits the histone acetyltransferase hGCN5 to c-Myc. Mol. Cell. Biol. 20, 556–562 (2000).

    Article  CAS  Google Scholar 

  33. Ayer, D. E., Kretzner, L. & Eisenman, R. N. Mad: a heterodimeric partner for Max that antagonizes Myc transcriptional activity. Cell 72, 211–222 (1993).

    Article  CAS  Google Scholar 

  34. Zervos, A. S., Gyuris, J. & Brent, R. Mxi1, a protein that specifically interacts with Max to bind Myc–Max recognition sites. Cell 72, 223–232 (1993).

    Article  CAS  Google Scholar 

  35. Rao, G. et al. Mouse Sin3A interacts with and can functionally substitute for the amino-terminal repression of the Myc antagonist Mxi1. Oncogene 12, 1165–1172 (1996).

    CAS  PubMed  Google Scholar 

  36. Laherty, C. D. et al. Histone deacetylases associated with the mSin3 corepressor mediate mad transcriptional repression. Cell 89, 349–356 (1997).

    Article  CAS  Google Scholar 

  37. Hassig, C. A., Fleischer, T. C., Billin, A. N., Schreiber, S. L. & Ayer, D. E. Histone deacetylase activity is required for full transcriptional repression by mSin3A. Cell 89, 341–347 (1997).

    Article  CAS  Google Scholar 

  38. Patel, J. H. et al. The c-MYC oncoprotein is a substrate of the acetyltransferases hGCN5/PCAF and TIP60. Mol. Cell. Biol. 24, 10826–10834 (2004).

    Article  CAS  Google Scholar 

  39. Dannenberg, J. H. et al. mSin3A corepressor regulates diverse transcriptional networks governing normal and neoplastic growth and survival. Genes Dev. 19, 1581–1595 (2005).

    Article  CAS  Google Scholar 

  40. Cowley, S. M. et al. The mSin3A chromatin-modifying complex is essential for embryogenesis and T-cell development. Mol. Cell. Biol. 25, 6990–7004 (2005).

    Article  CAS  Google Scholar 

  41. Keller, A. et al. GeneTrailExpress: a web-based pipeline for the statistical evaluation of microarray experiments. BMC Bioinformatics 9, 552–558 (2008).

    Article  Google Scholar 

  42. Zambelli, F., Pesole, G. & Pavesi, G. Pscan: finding over-represented transcription factor binding site motifs in sequences from co-regulated or co-expressed genes. Nucleic acid Res. 37, W247–W252 (2009).

    Article  CAS  Google Scholar 

  43. McConnell, B. B. & Yang, V. W. Mammalian Kruppel-like factors in health and diseases. Physiol. Rev. 90, 1337–1381 (2010).

    Article  CAS  Google Scholar 

  44. Payne, C. J. et al. Sin3a is required by sertoli cells to establish a niche for undifferentiated spermatogonia, germ cell tumors, and spermatid elongation. Stem Cells 28, 1424–1434 (2010).

    Article  CAS  Google Scholar 

  45. van Oevelen, C. et al. The mammalian Sin3 proteins are required for muscle development and sarcomere specification. Mol. Cell. Biol. 30, 5686–5697 (2010).

    Article  CAS  Google Scholar 

  46. van Oevelen, C. et al. A role for mammalian Sin3 in permanent gene silencing. Mol. Cell 32, 359–370 (2008).

    Article  CAS  Google Scholar 

  47. Vervoorts, J. et al. Stimulation of c-MYC transcriptional activity and acetylation by recruitment of the cofactor CBP. EMBO Rep. 4, 484–490 (2003).

    Article  CAS  Google Scholar 

  48. Popov, N., Schulein, C., Jaenicke, L. A. & Eilers, M. Ubiquitylation of the amino terminus of Myc by SCF(beta-TrCP) antagonizes SCF(Fbw7)-mediated turnover. Nat. Cell Biol. 12, 973–981 (2010).

    Article  CAS  Google Scholar 

  49. Blanpain, C. & Fuchs, E. Epidermal homeostasis: a balancing act of stem cells in the skin. Nat. Rev. Mol. Cell Biol. 10, 207–217 (2009).

    Article  CAS  Google Scholar 

  50. Soriano, P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat. Genet. 21, 70–71 (1999).

    Article  CAS  Google Scholar 

  51. David, G. et al. Specific requirement of the chromatin modifier mSin3B in cell cycle exit and cellular differentiation. Proc. Natl Acad. Sci. USA 105, 4168–4172 (2008).

    Article  CAS  Google Scholar 

  52. de Alboran, I. M. et al. Analysis of C-MYC function in normal cells via conditional gene-targeted mutation. Immunity 14, 45–55 (2001).

    Article  CAS  Google Scholar 

  53. Braun, K. M. et al. Manipulation of stem cell proliferation and lineage commitment: visualisation of label-retaining cells in wholemounts of mouse epidermis. Development 130, 5241–5255 (2003).

    Article  CAS  Google Scholar 

  54. Hussain, S. et al. The nucleolar RNA methyltransferase Misu (NSun2) is required for mitotic spindle stability. J. Cell Biol. 186, 27–40 (2009).

    Article  CAS  Google Scholar 

  55. Ren, B. et al. Genome-wide location and function of DNA binding proteins. Science 290, 2306–2309 (2000).

    Article  CAS  Google Scholar 

  56. Gentleman, R. C. et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5, 80.1–80.16 (2004).

    Article  Google Scholar 

  57. Smyth, G. in Bioinformatics and Computational Biology Solutions using R and Bioconductor (eds Carey, V., Gentleman, R., Dudoit, S., Huber, W. & Irizarry, R.) 397–420 (Springer, 2005).

    Book  Google Scholar 

  58. Tai, Y. C. & Speed, T. P. On gene ranking using replicated microarray time course data. Biometrics 65, 40–51 (2009).

    Article  CAS  Google Scholar 

  59. Toedling, J. et al. Ringo—an R/Bioconductor package for analyzing ChIP-chip readouts. BMC Bioinformatics 8, 221–225 (2007).

    Article  Google Scholar 

  60. Littlewood, T. D., Hancock, D. C., Danielian, P. S., Parker, M. G. & Evan, G. I. A modified oestrogen receptor ligand-binding domain as an improvedswitch for the regulation of heterologous proteins. Nucleic Acid Res. 23, 1686–1690 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the CRI Genomics and Bioinformatics Core Facilities. We are grateful to P. McDonel and everybody else who provided us with reagents. In particular, we thank A. Clarke for providing us with the Mycf/f mouse line and A. G. Smith for advice and comments on the manuscript. We further thank P. Humphreys, M. McLeish and N. Miller for their technical support. We acknowledge the support of the Cambridge Stem Cell Initiative, S. Evans-Freke, the ERC (DTO) and the EMBO Young Investigator Programme (DTO). This work was funded by Cancer Research UK (CR-UK) and the Medical Research Council (MRC).

Author information

Authors and Affiliations

Authors

Contributions

E.M.N. carried out experiments; C.L.C. carried out experiments; S.M. carried out bioinformatics analyses; S.H. carried out experiments; M.T. carried out bioinformatics analyses; S.B. carried out experiments; M.S. carried out bioinformatics analyses; J.N. provided reagents; B.K. carried out experiments; S.A.B. provided reagents; B.H. provided reagents; D.T.O. provided reagents and wrote the paper; M.F. designed the experiments and wrote the paper.

Corresponding author

Correspondence to Michaela Frye.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2397 kb)

Supplementary Tables 1–3

Supplementary Information (XLSX 366 kb)

Supplementary Table 4

Supplementary Information (XLSX 1249 kb)

Supplementary Table 5

Supplementary Information (XLS 92 kb)

Supplementary Table 6

Supplementary Information (XLSX 230 kb)

Supplementary Table 7

Supplementary Information (XLSX 85 kb)

Supplementary Table 8

Supplementary Information (PDF 104 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nascimento, E., Cox, C., MacArthur, S. et al. The opposing transcriptional functions of Sin3a and c-Myc are required to maintain tissue homeostasis. Nat Cell Biol 13, 1395–1405 (2011). https://doi.org/10.1038/ncb2385

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2385

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing