Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Resource
  • Published:

Defining human ERAD networks through an integrative mapping strategy

Abstract

Proteins that fail to correctly fold or assemble into oligomeric complexes in the endoplasmic reticulum (ER) are degraded by a ubiquitin- and proteasome-dependent process known as ER-associated degradation (ERAD). Although many individual components of the ERAD system have been identified, how these proteins are organized into a functional network that coordinates recognition, ubiquitylation and dislocation of substrates across the ER membrane is not well understood. We have investigated the functional organization of the mammalian ERAD system using a systems-level strategy that integrates proteomics, functional genomics and the transcriptional response to ER stress. This analysis supports an adaptive organization for the mammalian ERAD machinery and reveals a number of metazoan-specific genes not previously linked to ERAD.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hierarchical cluster analysis of CompPASS-identified high-confidence candidate interaction proteins (HCIPs).
Figure 2: The INfERAD.
Figure 3: shRNA-mediated refinement of ERAD E3 ligase subnetworks.
Figure 4: Functional genomic screen to identify essential substrate-specific ERAD components.
Figure 5: Coordinated ER stress response of ERAD genes.
Figure 6: Characterization of the Hrd1-binding partner FAM8A1.
Figure 7: Characterization of UBAC2, a ubiquitin-binding ERAD component.
Figure 8: Functional integration of mammalian ERAD networks.

Similar content being viewed by others

References

  1. Ghaemmaghami, S. et al. Global analysis of protein expression in yeast. Nature 425, 737–741 (2003).

    Article  CAS  Google Scholar 

  2. Hebert, D. N., Bernasconi, R. & Molinari, M. ERAD substrates: which way out? Semin. Cell Dev. Biol. 21, 526–532 (2010).

    Article  CAS  Google Scholar 

  3. Buchberger, A., Bukau, B. & Sommer, T. Protein quality control in the cytosol and the endoplasmic reticulum: brothers in arms. Mol. Cell 40, 238–252 (2010).

    Article  CAS  Google Scholar 

  4. Vembar, S. S. & Brodsky, J. L. One step at a time: endoplasmic reticulum-associated degradation. Nat. Rev. Mol. Cell Biol. 9, 944–957 (2008).

    Article  CAS  Google Scholar 

  5. Aridor, M. Visiting the ER: the endoplasmic reticulum as a target for therapeutics in traffic related diseases. Adv. Drug Deliv. Rev. 59, 759–781 (2007).

    Article  CAS  Google Scholar 

  6. Xie, W. & Ng, D. T. ERAD substrate recognition in budding yeast. Semin. Cell Dev. Biol. 21, 533–539 (2010).

    Article  CAS  Google Scholar 

  7. Bagola, K., Mehnert, M., Jarosch, E. & Sommer, T. Protein dislocation from the ER. Biochim. Biophys. Acta 1808, 925–936 (2011).

    Article  CAS  Google Scholar 

  8. Hoseki, J., Ushioda, R. & Nagata, K. Mechanism and components of endoplasmic reticulum-associated degradation. J. Biochem. 147, 19–25 (2010).

    Article  CAS  Google Scholar 

  9. Kostova, Z., Tsai, Y. C. & Weissman, A. M. Ubiquitin ligases, critical mediators of endoplasmic reticulum-associated degradation. Semin. Cell Dev. Biol. 18, 770–779 (2007).

    Article  CAS  Google Scholar 

  10. Carvalho, P., Stanley, A. M. & Rapoport, T. A. Retrotranslocation of a misfolded luminal ER protein by the ubiquitin-ligase Hrd1p. Cell 143, 579–591 (2010).

    Article  CAS  Google Scholar 

  11. Ploegh, H. L. A lipid-based model for the creation of an escape hatch from the endoplasmic reticulum. Nature 448, 435–438 (2007).

    Article  CAS  Google Scholar 

  12. Hampton, R. Y., Gardner, R. G. & Rine, J. Role of 26S proteasome and HRD genes in the degradation of 3-hydroxy-3-methylglutaryl-CoA reductase, an integral endoplasmic reticulum membrane protein. Mol. Biol. Cell 7, 2029–2044 (1996).

    Article  CAS  Google Scholar 

  13. Bordallo, J., Plemper, R. K., Finger, A. & Wolf, D. H. Der3p/Hrd1p is required for endoplasmic reticulum-associated degradation of misfolded lumenal and integral membrane proteins. Mol. Biol. Cell 9, 209–222 (1998).

    Article  CAS  Google Scholar 

  14. Bays, N. W., Gardner, R. G., Seelig, L. P., Joazeiro, C. A. & Hampton, R. Y. Hrd1p/Der3p is a membrane-anchored ubiquitin ligase required for ER-associated degradation. Nat. Cell Biol. 3, 24–29 (2001).

    Article  CAS  Google Scholar 

  15. Swanson, R., Locher, M. & Hochstrasser, M. A conserved ubiquitin ligase of the nuclear envelope/endoplasmic reticulum that functions in both ER-associated and Matα2 repressor degradation. Genes Dev. 15, 2660–2674 (2001).

    Article  CAS  Google Scholar 

  16. Carvalho, P., Goder, V. & Rapoport, T. A. Distinct ubiquitin-ligase complexes define convergent pathways for the degradation of ER proteins. Cell 126, 361–373 (2006).

    Article  CAS  Google Scholar 

  17. Ravid, T., Kreft, S. G. & Hochstrasser, M. Membrane and soluble substrates of the Doa10 ubiquitin ligase are degraded by distinct pathways. EMBO J. 25, 533–543 (2006).

    Article  CAS  Google Scholar 

  18. Vashist, S. & Ng, D. T. Misfolded proteins are sorted by a sequential checkpoint mechanism of ER quality control. J. Cell Biol. 165, 41–52 (2004).

    Article  CAS  Google Scholar 

  19. Deng, M. & Hochstrasser, M. Spatially regulated ubiquitin ligation by an ER/nuclear membrane ligase. Nature 443, 827–831 (2006).

    Article  CAS  Google Scholar 

  20. Mehnert, M., Sommer, T. & Jarosch, E. ERAD ubiquitin ligases: multifunctional tools for protein quality control and waste disposal in the endoplasmic reticulum. Bioessays 32, 905–913 (2010).

    Article  CAS  Google Scholar 

  21. Sowa, M. E., Bennett, E. J., Gygi, S. P. & Harper, J. W. Defining the human deubiquitinating enzyme interaction landscape. Cell 138, 389–403 (2009).

    Article  CAS  Google Scholar 

  22. Behrends, C., Sowa, M. E., Gygi, S. P. & Harper, J. W. Network organization of the human autophagy system. Nature 466, 68–76 (2010).

    Article  CAS  Google Scholar 

  23. Braun, P. et al. An experimentally derived confidence score for binary protein–protein interactions. Nat. Methods 6, 91–97 (2009).

    Article  CAS  Google Scholar 

  24. Riemer, J., Hansen, H. G., Appenzeller-Herzog, C., Johansson, L. & Ellgaard, L. Identification of the PDI-family member ERp90 as an interaction partner of ERFAD. PLoS One 6, e17037 (2011).

    Article  CAS  Google Scholar 

  25. Jonikas, M. C. et al. Comprehensive characterization of genes required for protein folding in the endoplasmic reticulum. Science 323, 1693–1697 (2009).

    Article  CAS  Google Scholar 

  26. Ye, Y., Shibata, Y., Yun, C., Ron, D. & Rapoport, T. A. A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol. Nature 429, 841–847 (2004).

    Article  CAS  Google Scholar 

  27. Lilley, B. N. & Ploegh, H. L. Multiprotein complexes that link dislocation, ubiquitination, and extraction of misfolded proteins from the endoplasmic reticulum membrane. Proc. Natl Acad. Sci. USA 102, 14296–14301 (2005).

    Article  CAS  Google Scholar 

  28. Li, G., Zhao, G., Zhou, X., Schindelin, H. & Lennarz, W. J. The AAA ATPase p97 links peptide N-glycanase to the endoplasmic reticulum-associated E3 ligase autocrine motility factor receptor. Proc. Natl Acad. Sci. USA 103, 8348–8353 (2006).

    Article  CAS  Google Scholar 

  29. Koegl, M. et al. A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly. Cell 96, 635–644 (1999).

    Article  CAS  Google Scholar 

  30. Riemer, J. et al. A luminal flavoprotein in endoplasmic reticulum-associated degradation. Proc. Natl Acad. Sci. USA 106, 14831–14836 (2009).

    Article  CAS  Google Scholar 

  31. Min, S. W., Chang, W. P. & Sudhof, T. C. E-Syts, a family of membranous Ca2+-sensor proteins with multiple C2 domains. Proc. Natl Acad. Sci. USA 104, 3823–3828 (2007).

    Article  CAS  Google Scholar 

  32. Pettersson, M., Bessonova, M., Gu, H. F., Groop, L. C. & Jonsson, J. I. Characterization, chromosomal localization, and expression during hematopoietic differentiation of the gene encoding Arl6ip, ADP-ribosylation-like factor-6 interacting protein (ARL6). Genomics 68, 351–354 (2000).

    Article  CAS  Google Scholar 

  33. Carrel, D. et al. Targeting of the 5-HT1A serotonin receptor to neuronal dendrites is mediated by Yif1B. J. Neurosci. 28, 8063–8073 (2008).

    Article  CAS  Google Scholar 

  34. Goldstein, J. L. & Brown, M. S. Regulation of the mevalonate pathway. Nature 343, 425–430 (1990).

    Article  CAS  Google Scholar 

  35. Ravid, T., Doolman, R., Avner, R., Harats, D. & Roitelman, J. The ubiquitin-proteasome pathway mediates the regulated degradation of mammalian 3-hydroxy-3-methylglutaryl-coenzyme A reductase. J. Biol. Chem. 275, 35840–35847 (2000).

    Article  CAS  Google Scholar 

  36. Song, B-L., Sever, N. & DeBose-Boyd, R. A. Gp78, a membrane-anchored ubiquitin ligase, associates with Insig-1 and couples sterol-regulated ubiquitination to degradation of HMG CoA reductase. Mol. Cell 19, 829–840 (2005).

    Article  CAS  Google Scholar 

  37. Nguyen, A. D., Lee, S. H. & DeBose-Boyd, R. A. Insig-mediated, sterol-accelerated degradation of the membrane domain of hamster 3-hydroxy-3-methylglutaryl-coenzyme A reductase in insect cells. J. Biol. Chem. 284, 26778–26788 (2009).

    Article  CAS  Google Scholar 

  38. Kikkert, M. et al. Human HRD1 is an E3 ubiquitin ligase involved in degradation of proteins from the endoplasmic reticulum. J. Biol. Chem. 279, 3525–3534 (2004).

    Article  CAS  Google Scholar 

  39. Christianson, J. C., Shaler, T. A., Tyler, R. E. & Kopito, R. R. OS-9 and GRP94 deliver mutant α1-antitrypsin to the Hrd1–SEL1L ubiquitin ligase complex for ERAD. Nat. Cell Biol. 10, 272–282 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Jo, Y., Sguigna, P. V. & DeBose-Boyd, R. A. Membrane-associated ubiquitin ligase complex containing gp78 mediates sterol-accelerated degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase. J. Biol. Chem. 286, 15022–15031 (2011).

    Article  CAS  Google Scholar 

  41. Chen, B. et al. The activity of a human endoplasmic reticulum-associated degradation E3, gp78, requires its Cue domain, RING finger, and an E2-binding site. Proc. Natl Acad. Sci. USA 103, 341–346 (2006).

    Article  CAS  Google Scholar 

  42. Ballar, P., Shen, Y., Yang, H. & Fang, S. The role of a novel p97/valosin-containing protein-interacting motif of gp78 in endoplasmic reticulum-associated degradation. J. Biol. Chem. 281, 35359–35368 (2006).

    Article  CAS  Google Scholar 

  43. Glickman, M. H., Rubin, D. M., Fried, V. A. & Finley, D. The regulatory particle of the Saccharomyces cerevisiae proteasome. Mol. Cell Biol. 18, 3149–3162 (1998).

    Article  CAS  Google Scholar 

  44. Verma, R. et al. Proteasomal proteomics: identification of nucleotide-sensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes. Mol. Biol. Cell 11, 3425–3439 (2000).

    Article  CAS  Google Scholar 

  45. Ustrell, V., Hoffman, L., Pratt, G. & Rechsteiner, M. PA200, a nuclear proteasome activator involved in DNA repair. EMBO J. 21, 3516–3525 (2002).

    Article  CAS  Google Scholar 

  46. Blickwedehl, J. et al. Role for proteasome activator PA200 and postglutamyl proteasome activity in genomic stability. Proc. Natl Acad. Sci. USA 105, 16165–16170 (2008).

    Article  CAS  Google Scholar 

  47. Sadre-Bazzaz, K., Whitby, F. G., Robinson, H., Formosa, T. & Hill, C. P. Structure of a Blm10 complex reveals common mechanisms for proteasome binding and gate opening. Mol. Cell 37, 728–735 (2010).

    Article  CAS  Google Scholar 

  48. Hosokawa, N. et al. Human XTP3-B forms an endoplasmic reticulum quality control scaffold with the HRD1-SEL1L ubiquitin ligase complex and BiP. J. Biol. Chem. 283, 20914–20924 (2008).

    Article  CAS  Google Scholar 

  49. Cormier, J. H., Tamura, T., Sunryd, J. C. & Hebert, D. N. EDEM1 recognition and delivery of misfolded proteins to the SEL1L-containing ERAD complex. Mol. Cell 34, 627–633 (2009).

    Article  CAS  Google Scholar 

  50. Hampton, R. Y., Koning, A., Wright, R. & Rine, J. In vivo examination of membrane protein localization and degradation with green fluorescent protein. Proc. Natl Acad. Sci. USA 93, 828–833 (1996).

    Article  CAS  Google Scholar 

  51. Fiebiger, E. et al. Dissection of the dislocation pathway for type I membrane proteins with a new small molecule inhibitor, eeyarestatin. Mol. Biol. Cell 15, 1635–1646 (2004).

    Article  CAS  Google Scholar 

  52. Delabarre, B., Christianson, J., Kopito, R. & Brunger, A. Central pore residues mediate the p97/VCP activity required for ERAD. Mol. Cell 22, 451–462 (2006).

    Article  CAS  Google Scholar 

  53. Stagg, H. R. et al. The TRC8 E3 ligase ubiquitinates MHC class I molecules before dislocation from the ER. J. Cell Biol. 186, 685–692 (2009).

    Article  CAS  Google Scholar 

  54. Bence, N. F., Sampat, R. M. & Kopito, R. R. Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292, 1552–1555 (2001).

    Article  CAS  Google Scholar 

  55. Hosokawa, N. et al. Enhancement of endoplasmic reticulum (ER) degradation of misfolded Null Hong Kong α1-antitrypsin by human ER mannosidase I. J. Biol. Chem. 278, 26287–26294 (2003).

    Article  CAS  Google Scholar 

  56. Liu, Y., Choudhury, P., Cabral, C. M. & Sifers, R. N. Intracellular disposal of incompletely folded human α1-antitrypsin involves release from calnexin and post-translational trimming of asparagine-linked oligosaccharides. J. Biol. Chem. 272, 7946–7951 (1997).

    Article  CAS  Google Scholar 

  57. Morito, D. et al. Gp78 cooperates with RMA1 in endoplasmic reticulum-associated degradation of CFTR ΔF508. Mol. Biol. Cell 19, 1328–1336 (2008).

    Article  CAS  Google Scholar 

  58. Travers, K. J. et al. Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 101, 249–258 (2000).

    Article  CAS  Google Scholar 

  59. Greenblatt, E. J., Olzmann, J. A. & Kopito, R. R. Derlin-1 is a rhomboid pseudoprotease required for the dislocation of mutant α-1 antitrypsin from the endoplasmic reticulum. Nat. Struct. Mol. Biol. 18, 1147–1152 (2011).

    Article  CAS  Google Scholar 

  60. Bennett, E. J. et al. Global changes to the ubiquitin system in Huntington’s disease. Nature 448, 704–708 (2007).

    Article  CAS  Google Scholar 

  61. Bennett, E. J., Rush, J., Gygi, S. P. & Harper, J. W. Dynamics of cullin-RING ubiquitin ligase network revealed by systematic quantitative proteomics. Cell 143, 951–965 (2010).

    Article  CAS  Google Scholar 

  62. Mueller, B., Klemm, E. J., Spooner, E., Claessen, J. H. & Ploegh, H. L. SEL1L nucleates a protein complex required for dislocation of misfolded glycoproteins. Proc. Natl Acad. Sci. USA 105, 12325–12330 (2008).

    Article  CAS  Google Scholar 

  63. Goder, V., Carvalho, P. & Rapoport, T. A. The ER-associated degradation component Der1p and its homolog Dfm1p are contained in complexes with distinct cofactors of the ATPase Cdc48p. FEBS Lett. 582, 1575–1580 (2008).

    Article  CAS  Google Scholar 

  64. Oda, Y. et al. Derlin-2 and Derlin-3 are regulated by the mammalian unfolded protein response and are required for ER-associated degradation. J. Cell Biol. 172, 383–393 (2006).

    Article  CAS  Google Scholar 

  65. Liang, J. et al. Characterization of erasin (UBXD2): a new ER protein that promotes ER-associated protein degradation. J. Cell Sci. 119, 4011–4024 (2006).

    Article  CAS  Google Scholar 

  66. Lee, J. N., Zhang, X., Feramisco, J. D., Gong, Y. & Ye, J. Unsaturated fatty acids inhibit proteasomal degradation of Insig-1 at a postubiquitination step. J. Biol. Chem. 283, 33772–33783 (2008).

    Article  CAS  Google Scholar 

  67. Alexandru, G. et al. UBXD7 binds multiple ubiquitin ligases and implicates p97 in HIF1α turnover. Cell 134, 804–816 (2008).

    Article  CAS  Google Scholar 

  68. Sato, B. K., Schulz, D., Do, P. H. & Hampton, R. Y. Misfolded membrane proteins are specifically recognized by the transmembrane domain of the Hrd1p ubiquitin ligase. Mol. Cell 34, 212–222 (2009).

    Article  CAS  Google Scholar 

  69. Younger, J. M. et al. Sequential quality-control checkpoints triage misfolded cystic fibrosis transmembrane conductance regulator. Cell 126, 571–582 (2006).

    Article  CAS  Google Scholar 

  70. Bernardi, K. M. et al. The E3 ubiquitin ligases Hrd1 and gp78 bind to and promote cholera toxin retro-translocation. Mol. Biol. Cell 21, 140–151 (2010).

    Article  CAS  Google Scholar 

  71. Ward, C. L., Omura, S. & Kopito, R. R. Degradation of CFTR by the ubiquitin-proteasome pathway. Cell 83, 121–127 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the NIH to R.R.K. and J.W.H. J.C.C. was supported by funding from the Ludwig Institute for Cancer Research. J.A.O. and R.E.T were supported by NRSA fellowships from NIH. E.J.B. was supported by a fellowship from the Damon Runyon Cancer Research Foundation (DRG 1974-08). We thank the members of the Kopito laboratory for helpful discussion, and M. Pearce, J. Hwang and C. Beveridge for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written collectively by J.C.C., J.A.O. and R.R.K. Experiments and data analysis were carried out by J.A.O. and J.C.C. with assistance from C.M.R. R.E.T. and E.J.G. LC–MS/MS analysis was carried out by T.A.S. CompPASS analysis was carried out by M.E.S. and E.J.B with support from J.W.H.

Corresponding author

Correspondence to Ron R. Kopito.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 6724 kb)

Supplementary Tables 1–10

Supplementary Information (XLS 3181 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christianson, J., Olzmann, J., Shaler, T. et al. Defining human ERAD networks through an integrative mapping strategy. Nat Cell Biol 14, 93–105 (2012). https://doi.org/10.1038/ncb2383

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2383

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research