Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Shaping development with ESCRTs

Abstract

Originally identified for their involvement in endosomal sorting and multivesicular endosome (MVE) biogenesis, components of the endosomal sorting complex required for transport (ESCRT) are now known to control additional cellular functions such as receptor signalling, cytokinesis, autophagy, polarity, migration, miRNA activity and mRNA transport. The diverse cell biological functions of ESCRT proteins are translated into a pleiotropic set of developmental trajectories that reflect the wide repertoire of these evolutionarily conserved proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The ESCRT machinery in endosomal sorting and MVE biogenesis.
Figure 2: Cell biological processes regulated by ESCRTs.
Figure 3: The ESCRT machinery in developmental processes.

Similar content being viewed by others

References

  1. Babst, M., Katzmann, D. J., Snyder, W. B., Wendland, B. & Emr, S. D. Endosome-associated complex, ESCRT-II, recruits transport machinery for protein sorting at the multivesicular body. Dev. Cell 3, 283–289 (2002).

    CAS  PubMed  Google Scholar 

  2. Babst, M., Katzmann, D. J., Estepa-Sabal, E. J., Meerloo, T. & Emr, S. D. Escrt-III: an endosome-associated heterooligomeric protein complex required for mvb sorting. Dev. Cell 3, 271–282 (2002).

    CAS  PubMed  Google Scholar 

  3. Katzmann, D. J., Babst, M. & Emr, S. D. Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I. Cell 106, 145–155 (2001).

    CAS  PubMed  Google Scholar 

  4. Leung, K. F., Dacks, J. B. & Field, M. C. Evolution of the multivesicular body ESCRT machinery; retention across the eukaryotic lineage. Traffic 9, 1698–1716 (2008).

    CAS  PubMed  Google Scholar 

  5. Hurley, J. H. & Emr, S. D. The ESCRT complexes: structure and mechanism of a membrane-trafficking network. Annu. Rev. Bioph. Biom. 35, 277–298 (2006).

    CAS  Google Scholar 

  6. Hurley, J. H. & Hanson, P. I. Membrane budding and scission by the ESCRT machinery: it's all in the neck. Nat. Rev. Mol. Cell Biol. 11, 556–566 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Raiborg, C. & Stenmark, H. The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature 458, 445–452 (2009).

    CAS  PubMed  Google Scholar 

  8. Saksena, S., Sun, J., Chu, T. & Emr, S. D. ESCRTing proteins in the endocytic pathway. Trends Biochem. Sci. 32, 561–573 (2007).

    CAS  PubMed  Google Scholar 

  9. Williams, R. L. & Urbe, S. The emerging shape of the ESCRT machinery. Nat. Rev. Mol. Cell Biol. 8, 355–368 (2007).

    CAS  PubMed  Google Scholar 

  10. Wollert, T. & Hurley, J. H. Molecular mechanism of multivesicular body biogenesis by ESCRT complexes. Nature 464, 864–869 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Komander, D., Clague, M. J. & Urbe, S. Breaking the chains: structure and function of the deubiquitinases. Nat. Rev. Mol. Cell Biol. 10, 550–563 (2009).

    CAS  PubMed  Google Scholar 

  12. Wollert, T., Wunder, C., Lippincott-Schwartz, J. & Hurley, J. H. Membrane scission by the ESCRT-III complex. Nature 458, 172–177 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Babst, M., Wendland, B., Estepa, E. J. & Emr, S. D. The Vps4p AAA ATPase regulates membrane association of a Vps protein complex required for normal endosome function. EMBO J. 17, 2982–2993 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Lloyd, T. E. et al. Hrs regulates endosome invagination and receptor tyrosine kinase signaling in Drosophila. Cell 108, 261–269 (2002).

    CAS  PubMed  Google Scholar 

  15. Jekely, G. & Rorth, P. Hrs mediates downregulation of multiple signalling receptors in Drosophila. EMBO Rep. 4, 1163–1168 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Piddini, E., Marshall, F., Dubois, L., Hirst, E. & Vincent, J. P. Arrow (LRP6) and Frizzled2 cooperate to degrade Wingless in Drosophila imaginal discs. Development 132, 5479–5489 (2005).

    CAS  PubMed  Google Scholar 

  17. Huang, H. R., Chen, Z. J., Kunes, S., Chang, G. D. & Maniatis, T. Endocytic pathway is required for Drosophila Toll innate immune signaling. Proc. Natl. Acad. Sci. USA 107, 8322–8327 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Chanut-Delalande, H. et al. The Hrs/Stam complex acts as a positive and negative regulator of RTK signaling during Drosophila development. PLoS. ONE. 5, e10245 (2010).

    PubMed  PubMed Central  Google Scholar 

  19. Thompson, B. J. et al. Tumor suppressor properties of the ESCRT-II complex component Vps25 in Drosophila. Dev. Cell 9, 711–720 (2005).

    CAS  PubMed  Google Scholar 

  20. Moberg, K. H., Schelble, S., Burdick, S. K. & Hariharan, I. K. Mutations in erupted, the Drosophila ortholog of mammalian tumor susceptibility gene 101, elicit non-cell-autonomous overgrowth. Dev. Cell 9, 699–710 (2005).

    CAS  PubMed  Google Scholar 

  21. Herz, H. M. et al. vps25 mosaics display non-autonomous cell survival and overgrowth, and autonomous apoptosis. Development 133, 1871–1880 (2006).

    CAS  PubMed  Google Scholar 

  22. Rodahl, L. M. et al. Disruption of Vps4 and JNK function in Drosophila causes tumour growth. PLoS ONE. 4, e4354 (2009).

    PubMed  PubMed Central  Google Scholar 

  23. Bache, K. G. et al. The ESCRT-III subunit hVps24 is required for degradation but not silencing of the epidermal growth factor receptor. Mol. Biol. Cell 17, 2513–2523 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Malerød, L., Stuffers, S., Brech, A. & Stenmark, H. Vps22/EAP30 in ESCRT-II mediates endosomal sorting of growth factor and chemokine receptors destined for lysosomal degradation. Traffic 8, 1617–1629 (2007).

    PubMed  Google Scholar 

  25. Lobert, V. H. et al. Ubiquitination of α5β1 integrin controls fibroblast migration through lysosomal degradation of fibronectin-integrin complexes. Dev. Cell 19, 148–159 (2010).

    CAS  PubMed  Google Scholar 

  26. Lu, Q., Hope, L. W., Brasch, M., Reinhard, C. & Cohen, S. N. TSG101 interaction with HRS mediates endosomal trafficking and receptor down-regulation. Proc. Natl Acad. Sci. USA 100, 7626–7631 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Michelet, X. et al. The ESCRT-III protein CeVPS-32 is enriched in domains distinct from CeVPS-27 and CeVPS-23 at the endosomal membrane of epithelial cells. Biol. Cell 101, 599–615 (2009).

    CAS  PubMed  Google Scholar 

  28. Audhya, A., McLeod, I. X., Yates, J. R. & Oegema, K. MVB-12, a fourth subunit of metazoan ESCRT-I, functions in receptor downregulation. PLoS ONE. 2, e956 (2007).

    PubMed  PubMed Central  Google Scholar 

  29. Vardhana, S., Choudhuri, K., Varma, R. & Dustin, M. L. Essential role of ubiquitin and TSG101 protein in formation and function of the central supramolecular activation cluster. Immunity. 32, 531–540 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Vaccari, T. & Bilder, D. The Drosophila tumor suppressor vps25 prevents nonautonomous overproliferation by regulating notch trafficking. Dev. Cell 9, 687–698 (2005).

    CAS  PubMed  Google Scholar 

  31. Taelman, V. F. et al. Wnt signaling requires sequestration of glycogen synthase kinase 3 inside multivesicular endosomes. Cell 143, 1136–1148 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Mukai, A. et al. Balanced ubiquitylation and deubiquitylation of Frizzled regulate cellular responsiveness to Wg/Wnt. EMBO J. 29, 2114–2125 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Tu, C. et al. Endosomal-sorting complexes required for transport (ESCRT) pathway-dependent endosomal traffic regulates the localization of active Src at focal adhesions. Proc. Natl. Acad. Sci. USA 107, 16107–16112 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Perez-Sala, D., Boya, P., Ramos, I., Herrera, M. & Stamatakis, K. The C-terminal sequence of RhoB directs protein degradation through an endo-lysosomal pathway. PLoS. ONE. 4, e8117 (2009).

    PubMed  PubMed Central  Google Scholar 

  35. Sevrioukov, E. A., Moghrabi, N., Kuhn, M. & Kramer, H. A mutation in dVps28 reveals a link between a subunit of the endosomal sorting complex required for transport-I complex and the actin cytoskeleton in Drosophila. Mol. Biol. Cell 16, 2301–2312 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Vaccari, T. et al. Comparative analysis of ESCRT-I, ESCRT-II and ESCRT-III function in Drosophila by efficient isolation of ESCRT mutants. J. Cell Sci. 122, 2413–2423 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Komada, M. & Soriano, P. Hrs, a FYVE finger protein localized to early endosomes, is implicated in vesicular traffic and required for ventral folding morphogenesis. Genes Dev. 13, 1475–1485 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Shim, J. H. et al. CHMP5 is essential for late endosome function and down-regulation of receptor signaling during mouse embryogenesis. J. Cell Biol. 172, 1045–1056 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Yamada, M. et al. Loss of hippocampal CA3 pyramidal neurons in mice lacking STAM1. Mol. Cell Biol. 21, 3807–3819 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Yamada, M. et al. Signal-transducing adaptor molecules STAM1 and STAM2 are required for T-cell development and survival. Mol. Cell Biol. 22, 8648–8658 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Ruland, J. et al. p53 accumulation, defective cell proliferation, and early embryonic lethality in mice lacking tsg101. Proc. Natl. Acad. Sci. USA 98, 1859–1864 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Urwin, H. et al. Disruption of endocytic trafficking in frontotemporal dementia with CHMP2B mutations. Hum. Mol. Genet. 19, 2228–2238 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Lee, J. A., Beigneux, A., Ahmad, S. T., Young, S. G. & Gao, F. B. ESCRT-III dysfunction causes autophagosome accumulation and neurodegeneration. Curr. Biol. 17, 1561–1567 (2007).

    CAS  PubMed  Google Scholar 

  44. Gilbert, M. M., Robinson, B. S. & Moberg, K. H. Functional interactions between the erupted/tsg101 growth suppressor gene and the DaPKC and rbf1 genes in Drosophila imaginal disc tumors. PLoS. ONE. 4, e7039 (2009).

    PubMed  PubMed Central  Google Scholar 

  45. Buchanan, S. M., Schalm, S. S. & Maniatis, T. Proteolytic processing of protocadherin proteins requires endocytosis. Proc. Natl. Acad. Sci. USA 107, 17774–17779 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Auth, T. et al. The TSG101 protein binds to connexins and is involved in connexin degradation. Exp. Cell Res. 315, 1053–1062 (2009).

    CAS  PubMed  Google Scholar 

  47. Leithe, E. et al. Ubiquitylation of the gap junction protein connexin-43 signals its trafficking from early endosomes to lysosomes in a process mediated by Hrs and Tsg101. J. Cell Sci. 122, 3883–3893 (2009).

    CAS  PubMed  Google Scholar 

  48. Vicente-Manzanares, M., Ma, X., Adelstein, R. S. & Horwitz, A. R. Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat. Rev. Mol. Cell Biol. 10, 778–790 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Lobert, V. H. & Stenmark, H. The ESCRT machinery mediates polarization of fibroblasts through regulation of myosin light chain. J. Cell Sci. http://dx.doi.org/10.1242/jcs.088310 (in the press).

  50. Mizushima, N., Levine, B., Cuervo, A. M. & Klionsky, D. J. Autophagy fights disease through cellular self-digestion. Nature 451, 1069–1075 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Berg, T. O., Fengsrud, M., Stromhaug, P. E., Berg, T. & Seglen, P. O. Isolation and characterization of rat liver amphisomes - Evidence for fusion of autophagosomes with both early and late endosomes. J. Biol. Chem. 273, 21883–21892 (1998).

    CAS  PubMed  Google Scholar 

  52. Sahu, R. et al. Microautophagy of cytosolic proteins by late endosomes. Dev. Cell 20, 131–139 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Rusten, T. E. & Stenmark, H. How do ESCRT proteins control autophagy? J. Cell Sci. 122, 2179–2183 (2009).

    CAS  PubMed  Google Scholar 

  54. Roudier, N., Lefebvre, C. & Legouis, R. CeVPS-27 is an endosomal protein required for the molting and the endocytic trafficking of the low-density lipoprotein receptor-related protein 1 in Caenorhabditis elegans. Traffic 6, 695–705 (2005).

    CAS  PubMed  Google Scholar 

  55. Rusten, T. E. et al. ESCRTs and Fab1 regulate distinct steps of autophagy. Curr. Biol. 17, 1817–1825 (2007).

    CAS  PubMed  Google Scholar 

  56. Filimonenko, M. et al. Functional multivesicular bodies are required for autophagic clearance of protein aggregates associated with neurodegenerative disease. J. Cell Biol. 179, 485–500 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Doyotte, A., Russell, M. R., Hopkins, C. R. & Woodman, P. G. Depletion of TSG101 forms a mammalian “Class E” compartment: a multicisternal early endosome with multiple sorting defects. J. Cell Sci. 118, 3003–3017 (2005).

    CAS  PubMed  Google Scholar 

  58. Lee, J. A. & Gao, F. B. Inhibition of autophagy induction delays neuronal cell loss caused by dysfunctional ESCRT-III in frontotemporal dementia. J. Neurosci. 29, 8506–8511 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Denton, D. et al. Autophagy, not apoptosis, is essential for midgut cell death in Drosophila. Curr. Biol. 19, 1741–1746 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Nezis, I. P. et al. Autophagic degradation of dBruce controls DNA fragmentation in nurse cells during late Drosophila melanogaster oogenesis. J. Cell Biol. 190, 523–531 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Morita, E. et al. Human ESCRT-III and VPS4 proteins are required for centrosome and spindle maintenance. Proc. Natl. Acad. Sci. USA 107, 12889–12894 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Carlton, J. G. & Martin-Serrano, J. Parallels between cytokinesis and retroviral budding: a role for the ESCRT machinery. Science 316, 1908–1912 (2007).

    CAS  PubMed  Google Scholar 

  63. Fabbro, M. et al. Cdk1/Erk2- and Plk1-dependent phosphorylation of a centrosome protein, Cep55, is required for its recruitment to midbody and cytokinesis. Dev. Cell 9, 477–488 (2005).

    CAS  PubMed  Google Scholar 

  64. Bastos, R. N. & Barr, F. A. Plk1 negatively regulates Cep55 recruitment to the midbody to ensure orderly abscission. J. Cell Biol. 191, 751–760 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Morita, E. et al. Human ESCRT and ALIX proteins interact with proteins of the midbody and function in cytokinesis. EMBO J. 26, 4215–4227 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Elia, N., Sougrat, R., Spurlin, T. A., Hurley, J. H. & Lippincott-Schwartz, J. Dynamics of endosomal sorting complex required for transport (ESCRT) machinery during cytokinesis and its role in abscission. Proc. Natl Acad. Sci. USA 108, 4846–4851 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Guizetti, J. et al. Cortical constriction during abscission involves helices of ESCRT-III-dependent filaments. Science 331, 1616–1620 (2011).

    CAS  PubMed  Google Scholar 

  68. Raiborg, C. et al. FYVE and coiled-coil domains determine the specific localisation of Hrs to early endosomes. J. Cell Sci. 114, 2255–2263 (2001).

    CAS  PubMed  Google Scholar 

  69. Sagona, A. P. et al. PtdIns(3)P controls cytokinesis through KIF13A-mediated recruitment of FYVE-CENT to the midbody. Nat. Cell Biol. 12, 362–371 (2010).

    CAS  PubMed  Google Scholar 

  70. Spitzer, C. et al. The Arabidopsis elch mutant reveals functions of an ESCRT component in cytokinesis. Development 133, 4679–4689 (2006).

    CAS  PubMed  Google Scholar 

  71. Gibbings, D. J., Ciaudo, C., Erhardt, M. & Voinnet, O. Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nat. Cell Biol. 11, 1143–1149 (2009).

    CAS  PubMed  Google Scholar 

  72. Lee, Y. S. et al. Silencing by small RNAs is linked to endosomal trafficking. Nat. Cell Biol. 11, 1150–1156 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Irion, U. & St.Johnston D. bicoid RNA localisation requires specific binding of an endosomal sorting complex. Nature 445, 554–558 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Teo, H. et al. ESCRT-I core and ESCRT-II GLUE domain structures reveal central role for GLUE domain in linking to ESCRT-I and membranes. Cell 125, 99–111 (2006).

    CAS  PubMed  Google Scholar 

  75. Slagsvold, T. et al. Eap45 in mammalian ESCRT-II binds ubiquitin via a phosphoinositide-interacting GLUE domain. J. Biol. Chem. 280, 19600–19606 (2005).

    CAS  PubMed  Google Scholar 

  76. Samson, R. Y., Obita, T., Freund, S. M., Williams, R. L. & Bell, S. D. A Role for the ESCRT System in Cell Division in Archaea. Science 322, 1710–1713 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Samson, R. Y. et al. Molecular and structural basis of ESCRT-III recruitment to membranes during archaeal cell division. Mol. Cell 41, 186–196 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Lindas, A. C., Karlsson, E. A., Lindgren, M. T., Ettema, T. J. & Bernander, R. A unique cell division machinery in the Archaea. Proc. Natl. Acad. Sci. USA 105, 18942–18946 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Kantamneni, S. et al. GISP binding to TSG101 increases GABA(B) receptor stability by down-regulating ESCRT-mediated lysosomal degradation. J. Neurochem. 107, 86–95 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Bishop, N. & Woodman, P. TSG101/mammalian VPS23 and mammalian VPS28 interact directly and are recruited to VPS4-induced endosomes. J. Biol. Chem. 276, 11735–11742 (2001).

    CAS  PubMed  Google Scholar 

  81. Bishop, N. & Woodman, P. ATPase-defective mammalian VPS4 localizes to aberrant endosomes and impairs cholesterol trafficking. Mol. Biol. Cell 11, 227–239 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Bache, K. G., Raiborg, C., Mehlum, A. & Stenmark, H. STAM and Hrs are subunits of a multivalent Ubiquitin-binding complex on early endosomes. J. Biol. Chem. 278, 12513–12521 (2003).

    CAS  PubMed  Google Scholar 

  83. Babst, M., Odorizzi, G., Estepa, E. J. & Emr, S. D. Mammalian tumor suceptibility gene 101 (TSG101) and the yeast homologue, Vps23p, both function in late endosomal trafficking. Traffic 1, 248–258 (2000).

    CAS  PubMed  Google Scholar 

  84. Bache, K. G., Brech, A., Mehlum, A. & Stenmark, H. Hrs regulates multivesicular body formation via ESCRT recruitment to endosomes. J. Cell Biol. 162, 435–442 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Bache, K. G. et al. The growth-regulatory protein HCRP1/hVps37A is a subunit of mammalian ESCRT-I and mediates receptor down-regulation. Mol. Biol. Cell 15, 4337–4346 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Malerod, L., Stuffers, S., Brech, A. & Stenmark, H. Vps22/EAP30 in ESCRT-II mediates endosomal sorting of growth factor and chemokine receptors destined for lysosomal degradation. Traffic 8, 1617–1629 (2007).

    PubMed  Google Scholar 

  87. Langelier, C. et al. Human ESCRT-II complex and its role in human immunodeficiency virus type 1 release. J. Virol. 80, 9465–9480 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Tsunematsu, T. et al. Distinct functions of human MVB12A and MVB12B in the ESCRT-I dependent on their posttranslational modifications. Biochem. Biophys. Res. Commun. 399, 232–237 (2010).

    CAS  PubMed  Google Scholar 

  89. Yorikawa, C. et al. Human CHMP6, a myristoylated ESCRT-III protein, interacts directly with an ESCRT-II component EAP20 and regulates endosomal cargo sorting. Biochem. J. 387, 17–26 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Seto, E. S. & Bellen, H. J. Internalization is required for proper Wingless signaling in Drosophila melanogaster. J. Cell Biol. 173, 95–106 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Martin-Serrano, J. & Neil, S. J. Host factors involved in retroviral budding and release. Nat. Rev. Microbiol. 9, 519–531 (2011).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

T.E.R. is an investigator of the Norwegian Cancer Society. T.V. acknowledges funding from Associazione Italiana per la Ricerca sul Cancro. H.S. thanks the Research Council of Norway, the South-Eastern Norway Regional Health Authority, and the European Research Council for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Stenmark.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rusten, T., Vaccari, T. & Stenmark, H. Shaping development with ESCRTs. Nat Cell Biol 14, 38–45 (2012). https://doi.org/10.1038/ncb2381

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2381

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing