Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The centrosome cycle: Centriole biogenesis, duplication and inherent asymmetries

Abstract

Centrosomes are microtubule-organizing centres of animal cells. They influence the morphology of the microtubule cytoskeleton, function as the base for the primary cilium and serve as a nexus for important signalling pathways. At the core of a typical centrosome are two cylindrical microtubule-based structures termed centrioles, which recruit a matrix of associated pericentriolar material. Cells begin the cell cycle with exactly one centrosome, and the duplication of centrioles is constrained such that it occurs only once per cell cycle and at a specific site in the cell. As a result of this duplication mechanism, the two centrioles differ in age and maturity, and thus have different functions; for example, the older of the two centrioles can initiate the formation of a ciliary axoneme. We discuss spatial aspects of the centrosome duplication cycle, the mechanism of centriole assembly and the possible consequences of the inherent asymmetry of centrioles and centrosomes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Centriole biogenesis.
Figure 2: Identification of SAS-6 as a key element of the centriolar cartwheel.
Figure 3: Centriole and centrosome asymmetries.

References

  1. 1

    Luders, J. & Stearns, T. Microtubule-organizing centres: a re-evaluation. Nat. Rev. Mol. Cell Biol. 8, 161–167 (2007).

    PubMed  Google Scholar 

  2. 2

    Goetz, S. C. & Anderson, K. V. The primary cilium: a signalling centre during vertebrate development. Nat. Rev. Genet. 11, 331–344 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  3. 3

    Carvalho-Santos, Z., Azimzadeh, J., Pereira-Leal, J. B. & Bettencourt-Dias, M. Evolution: Tracing the origins of centrioles, cilia, and flagella. J. Cell Biol. 194, 165–175 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  4. 4

    Nigg, E. A. & Raff, J. W. Centrioles, centrosomes, and cilia in health and disease. Cell 139, 663–678 (2009).

    PubMed  CAS  Google Scholar 

  5. 5

    Vaughan, S. & Dawe, H. R. Common themes in centriole and centrosome movements. Trends Cell Biol. 21, 57–66 (2011).

    PubMed  CAS  Google Scholar 

  6. 6

    Azimzadeh, J. & Marshall, W. F. Building the centriole. Curr. Biol. 20, R816–R825 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  7. 7

    Bettencourt-Dias, M., Hildebrandt, F., Pellman, D., Woods, G. & Godinho, S. A. Centrosomes and cilia in human disease. Trends Genet. 27, 307–315 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  8. 8

    Avidor-Reiss, T. The cellular and developmental program connecting the centrosome and cilium duplication cycle. Semin. Cell Dev. Biol. 21, 139–141 (2010).

    PubMed  Google Scholar 

  9. 9

    Marshall, W. F. Centriole evolution. Curr. Opin. Cell Biol. 21, 14–19 (2009).

    PubMed  PubMed Central  CAS  Google Scholar 

  10. 10

    Khodjakov, A. et al. De novo formation of centrosomes in vertebrate cells arrested during S phase. J. Cell Biol. 158, 1171–1181 (2002).

    PubMed  PubMed Central  CAS  Google Scholar 

  11. 11

    Dammermann, A., Maddox, P. S., Desai, A. & Oegema, K. SAS-4 is recruited to a dynamic structure in newly forming centrioles that is stabilized by the γ-tubulin-mediated addition of centriolar microtubules. J. Cell Biol. 180, 771–785 (2008).

    PubMed  PubMed Central  CAS  Google Scholar 

  12. 12

    Loncarek, J., Hergert, P., Magidson, V. & Khodjakov, A. Control of daughter centriole formation by the pericentriolar material. Nat. Cell Biol. 10, 322–328 (2008).

    PubMed  PubMed Central  CAS  Google Scholar 

  13. 13

    Strnad, P. et al. Regulated HsSAS-6 levels ensure formation of a single procentriole per centriole during the centrosome duplication cycle. Dev. Cell 13, 203–213 (2007).

    PubMed  PubMed Central  CAS  Google Scholar 

  14. 14

    Andersen, J. S. et al. Proteomic characterization of the human centrosome by protein correlation profiling. Nature 426, 570–574 (2003).

    PubMed  CAS  Google Scholar 

  15. 15

    Jakobsen, L. et al. Novel asymmetrically localizing components of human centrosomes identified by complementary proteomics methods. EMBO J. 30, 1520–1535 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  16. 16

    Strnad, P. & Gonczy, P. Mechanisms of procentriole formation. Trends Cell Biol. 18, 389–396 (2008).

    PubMed  CAS  Google Scholar 

  17. 17

    Dobbelaere, J. et al. A genome-wide RNAi screen to dissect centriole duplication and centrosome maturation in Drosophila. PLoS Biol. 6, e224 (2008).

    PubMed  PubMed Central  Google Scholar 

  18. 18

    Kleylein-Sohn, J. et al. Plk4-induced centriole biogenesis in human cells. Dev. Cell 13, 190–202 (2007).

    PubMed  CAS  Google Scholar 

  19. 19

    Rodrigues-Martins, A. et al. DSAS-6 organizes a tube-like centriole precursor, and its absence suggests modularity in centriole assembly. Curr. Biol. 17, 1465–1472 (2007).

    PubMed  CAS  Google Scholar 

  20. 20

    Rodrigues-Martins, A., Riparbelli, M., Callaini, G., Glover, D. M. & Bettencourt-Dias, M. Revisiting the role of the mother centriole in centriole biogenesis. Science 316, 1046–1050 (2007).

    PubMed  CAS  Google Scholar 

  21. 21

    Peel, N., Stevens, N. R., Basto, R. & Raff, J. W. Overexpressing centriole-replication proteins in vivo induces centriole overduplication and de novo formation. Curr. Biol. 17, 834–843 (2007).

    PubMed  PubMed Central  CAS  Google Scholar 

  22. 22

    Puklowski, A. et al. The SCF–FBXW5 E3-ubiquitin ligase is regulated by PLK4 and targets HsSAS-6 to control centrosome duplication. Nat. Cell Biol. 13, 1004–1009 (2011).

    PubMed  CAS  Google Scholar 

  23. 23

    Kitagawa, D., Busso, C., Fluckiger, I. & Gonczy, P. Phosphorylation of SAS-6 by ZYG-1 is critical for centriole formation in C. elegans embryos. Dev. Cell 17, 900–907 (2009).

    PubMed  CAS  Google Scholar 

  24. 24

    Bettencourt-Dias, M. et al. SAK/PLK4 is required for centriole duplication and flagella development. Curr. Biol. 15, 2199–2207 (2005).

    PubMed  CAS  Google Scholar 

  25. 25

    Habedanck, R., Stierhof, Y. D., Wilkinson, C. J. & Nigg, E. A. The Polo kinase Plk4 functions in centriole duplication. Nat. Cell Biol. 7, 1140–1146 (2005).

    PubMed  CAS  Google Scholar 

  26. 26

    Cunha-Ferreira, I. et al. The SCF/Slimb ubiquitin ligase limits centrosome amplification through degradation of SAK/PLK4. Curr. Biol. 19, 43–49 (2009).

    PubMed  CAS  Google Scholar 

  27. 27

    Guderian, G., Westendorf, J., Uldschmid, A. & Nigg, E. A. Plk4 trans-autophosphorylation regulates centriole number by controlling βTrCP-mediated degradation. J. Cell Sci. 123, 2163–2169 (2010).

    PubMed  CAS  Google Scholar 

  28. 28

    Holland, A. J., Lan, W., Niessen, S., Hoover, H. & Cleveland, D. W. Polo-like kinase 4 kinase activity limits centrosome overduplication by autoregulating its own stability. J. Cell Biol. 188, 191–198 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  29. 29

    Rogers, G. C., Rusan, N. M., Roberts, D. M., Peifer, M. & Rogers, S. L. The SCF Slimb ubiquitin ligase regulates Plk4/Sak levels to block centriole reduplication. J. Cell Biol. 184, 225–239 (2009).

    PubMed  PubMed Central  CAS  Google Scholar 

  30. 30

    Sillibourne, J. E. et al. Autophosphorylation of polo-like kinase 4 and its role in centriole duplication. Mol. Biol. Cell 21, 547–561 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  31. 31

    Kitagawa, D. et al. PP2A phosphatase acts upon SAS-5 to ensure centriole formation in C. elegans embryos. Dev. Cell 20, 550–562 (2011).

    PubMed  CAS  Google Scholar 

  32. 32

    Song, M. H., Liu, Y., Anderson, D. E., Jahng, W. J. & O'Connell, K. F. Protein phosphatase 2A-SUR-6/B55 regulates centriole duplication in C. elegans by controlling the levels of centriole assembly factors. Dev. Cell 20, 563–571 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  33. 33

    Dammermann, A. et al. Centriole assembly requires both centriolar and pericentriolar material proteins. Dev. Cell 7, 815–829 (2004).

    PubMed  CAS  Google Scholar 

  34. 34

    Pelletier, L., O'Toole, E., Schwager, A., Hyman, A. A. & Muller-Reichert, T. Centriole assembly in Caenorhabditis elegans. Nature 444, 619–623 (2006).

    PubMed  CAS  Google Scholar 

  35. 35

    Nakazawa, Y., Hiraki, M., Kamiya, R. & Hirono, M. SAS-6 is a cartwheel protein that establishes the 9-fold symmetry of the centriole. Curr. Biol. 17, 2169–2174 (2007).

    PubMed  CAS  Google Scholar 

  36. 36

    Gopalakrishnan, J. et al. Self-assembling SAS-6 multimer is a core centriole building block. J. Biol. Chem. 285, 8759–8770 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  37. 37

    Stevens, N. R., Dobbelaere, J., Brunk, K., Franz, A. & Raff, J. W. Drosophila Ana2 is a conserved centriole duplication factor. J. Cell Biol. 188, 313–323 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  38. 38

    Kitagawa, D. et al. Structural basis of the 9-fold symmetry of centrioles. Cell 144, 364–375 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  39. 39

    van Breugel, M. et al. Structures of SAS-6 suggest its organization in centrioles. Science 331, 1196–1199 (2011).

    PubMed  CAS  Google Scholar 

  40. 40

    Kohlmaier, G. et al. Overly long centrioles and defective cell division upon excess of the SAS-4-related protein CPAP. Curr. Biol. 19, 1012–1018 (2009).

    PubMed  PubMed Central  CAS  Google Scholar 

  41. 41

    Schmidt, T. I. et al. Control of centriole length by CPAP and CP110. Curr. Biol. 19, 1005–1011 (2009).

    PubMed  CAS  Google Scholar 

  42. 42

    Tang, C. J., Fu, R. H., Wu, K. S., Hsu, W. B. & Tang, T. K. CPAP is a cell-cycle regulated protein that controls centriole length. Nat. Cell Biol. 11, 825–831 (2009).

    PubMed  CAS  Google Scholar 

  43. 43

    Azimzadeh, J. et al. hPOC5 is a centrin-binding protein required for assembly of full-length centrioles. J. Cell Biol. 185, 101–114 (2009).

    PubMed  PubMed Central  CAS  Google Scholar 

  44. 44

    Singla, V., Romaguera-Ros, M., Garcia-Verdugo, J. M. & Reiter, J. F. Ofd1, a human disease gene, regulates the length and distal structure of centrioles. Dev. Cell 18, 410–424 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  45. 45

    Spektor, A., Tsang, W. Y., Khoo, D. & Dynlacht, B. D. Cep97 and CP110 suppress a cilia assembly program. Cell 130, 678–690 (2007).

    PubMed  CAS  Google Scholar 

  46. 46

    Tsang, W. Y. et al. CP110 suppresses primary cilia formation through its interaction with CEP290, a protein deficient in human ciliary disease. Dev. Cell 15, 187–197 (2008).

    PubMed  PubMed Central  CAS  Google Scholar 

  47. 47

    D'Angiolella, V. et al. SCF(Cyclin F) controls centrosome homeostasis and mitotic fidelity through CP110 degradation. Nature 466, 138–142 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  48. 48

    Korzeniewski, N., Cuevas, R., Duensing, A. & Duensing, S. Daughter centriole elongation is controlled by proteolysis. Mol. Biol. Cell 21, 3942–3951 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  49. 49

    Bornens, M. Centrosome composition and microtubule anchoring mechanisms. Curr. Opin. Cell Biol. 14, 25–34 (2002).

    CAS  Google Scholar 

  50. 50

    Cizmecioglu, O. et al. Cep152 acts as a scaffold for recruitment of Plk4 and CPAP to the centrosome. J. Cell Biol. 191, 731–739 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  51. 51

    Dzhindzhev, N. S. et al. Asterless is a scaffold for the onset of centriole assembly. Nature 467, 714–718 (2010).

    PubMed  CAS  Google Scholar 

  52. 52

    Hatch, E. M., Kulukian, A., Holland, A. J., Cleveland, D. W. & Stearns, T. Cep152 interacts with Plk4 and is required for centriole duplication. J. Cell Biol. 191, 721–729 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  53. 53

    Conduit, P. T. et al. Centrioles regulate centrosome size by controlling the rate of Cnn incorporation into the PCM. Curr. Biol. 20, 2178–2186 (2010).

    PubMed  CAS  Google Scholar 

  54. 54

    Stevens, N. R., Roque, H. & Raff, J. W. DSas-6 and Ana2 coassemble into tubules to promote centriole duplication and engagement. Dev. Cell 19, 913–919 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  55. 55

    Tsou, M. F. & Stearns, T. Mechanism limiting centrosome duplication to once per cell cycle. Nature 442, 947–951 (2006).

    PubMed  CAS  Google Scholar 

  56. 56

    Tsou, M. F. et al. Polo kinase and separase regulate the mitotic licensing of centriole duplication in human cells. Dev. Cell 17, 344–354 (2009).

    PubMed  PubMed Central  CAS  Google Scholar 

  57. 57

    Uhlmann, F., Wernic, D., Poupart, M. A., Koonin, E. V. & Nasmyth, K. Cleavage of cohesin by the CD clan protease separin triggers anaphase in yeast. Cell 103, 375–386 (2000).

    PubMed  CAS  Google Scholar 

  58. 58

    Nigg, E. A. Centrosome duplication: of rules and licenses. Trends Cell Biol. 17, 215–221 (2007).

    PubMed  CAS  Google Scholar 

  59. 59

    Schöckel, L., Möckel, M., Mayer, B., Boos, D. & Stemmann, O. Cleavage of cohesin rings coordinates the separation of centrioles and chromatids. Nat. Cell Biol. 13, 966–972 (2011).

  60. 60

    Mayor, T., Stierhof, Y. D., Tanaka, K., Fry, A. M. & Nigg, E. A. The centrosomal protein C-Nap1 is required for cell cycle-regulated centrosome cohesion. J. Cell Biol. 151, 837–846 (2000).

    PubMed  PubMed Central  CAS  Google Scholar 

  61. 61

    Bahe, S., Stierhof, Y. D., Wilkinson, C. J., Leiss, F. & Nigg, E. A. Rootletin forms centriole-associated filaments and functions in centrosome cohesion. J. Cell Biol. 171, 27–33 (2005).

    PubMed  PubMed Central  CAS  Google Scholar 

  62. 62

    Yang, J., Adamian, M. & Li, T. Rootletin interacts with C-Nap1 and may function as a physical linker between the pair of centrioles/basal bodies in cells. Mol. Biol. Cell 17, 1033–1040 (2006).

    PubMed  PubMed Central  CAS  Google Scholar 

  63. 63

    Graser, S., Stierhof, Y. D. & Nigg, E. A. Cep68 and Cep215 (Cdk5rap2) are required for centrosome cohesion. J. Cell Sci. 120, 4321–4331 (2007).

    CAS  Google Scholar 

  64. 64

    Piel, M., Meyer, P., Khodjakov, A., Rieder, C. L. & Bornens, M. The respective contributions of the mother and daughter centrioles to centrosome activity and behavior in vertebrate cells. J. Cell Biol. 149, 317–330 (2000).

    PubMed  PubMed Central  CAS  Google Scholar 

  65. 65

    Piel, M., Nordberg, J., Euteneuer, U. & Bornens, M. Centrosome-dependent exit of cytokinesis in animal cells. Science 291, 1550–1553 (2001).

    PubMed  CAS  Google Scholar 

  66. 66

    Fry, A. M. et al. C-Nap1, a novel centrosomal coiled-coil protein and candidate substrate of the cell cycle-regulated protein kinase Nek2. J. Cell Biol. 141, 1563–1574 (1998).

    PubMed  PubMed Central  CAS  Google Scholar 

  67. 67

    Helps, N. R., Luo, X., Barker, H. M. & Cohen, P. T. NIMA-related kinase 2 (Nek2), a cell-cycle-regulated protein kinase localized to centrosomes, is complexed to protein phosphatase 1. Biochem. J. 349, 509–518 (2000).

    PubMed  PubMed Central  CAS  Google Scholar 

  68. 68

    Bertran, M. T. et al. Nek9 is a Plk1-activated kinase that controls early centrosome separation through Nek6/7 and Eg5. EMBO J. 30, 2634–2647 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  69. 69

    Mardin, B. R. et al. Components of the Hippo pathway cooperate with Nek2 kinase to regulate centrosome disjunction. Nat. Cell Biol. 12, 1166–1176 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  70. 70

    Mardin, B. R., Agircan, F. G., Lange, C. & Schiebel, E. Plk1 Controls the Nek2A-PP1γ antagonism in centrosome disjunction. Curr. Biol. 21, 1145–1151 (2011).

    PubMed  CAS  Google Scholar 

  71. 71

    Halder, G. & Johnson, R. L. Hippo signaling: growth control and beyond. Development 138, 9–22 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  72. 72

    Hergovich, A. et al. The MST1 and hMOB1 tumor suppressors control human centrosome duplication by regulating NDR kinase phosphorylation. Curr. Biol. 19, 1692–1702 (2009).

    PubMed  CAS  Google Scholar 

  73. 73

    Hardy, P. A. & Zacharias, H. Reappraisal of the Hansemann-Boveri hypothesis on the origin of tumors. Cell Biol. Int. 29, 983–992 (2005).

    PubMed  Google Scholar 

  74. 74

    Basto, R. et al. Flies without centrioles. Cell 125, 1375–1386 (2006).

    PubMed  CAS  Google Scholar 

  75. 75

    Basto, R. et al. Centrosome amplification can initiate tumorigenesis in flies. Cell 133, 1032–1042 (2008).

    PubMed  PubMed Central  CAS  Google Scholar 

  76. 76

    Ganem, N. J., Godinho, S. A. & Pellman, D. A mechanism linking extra centrosomes to chromosomal instability. Nature 460, 278–282 (2009).

    PubMed  PubMed Central  CAS  Google Scholar 

  77. 77

    Silkworth, W. T., Nardi, I. K., Scholl, L. M. & Cimini, D. Multipolar spindle pole coalescence is a major source of kinetochore mis-attachment and chromosome mis-segregation in cancer cells. PLoS One 4, e6564 (2009).

    PubMed  PubMed Central  Google Scholar 

  78. 78

    Kwon, M. et al. Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes. Genes Dev. 22, 2189–2203 (2008).

    PubMed  PubMed Central  CAS  Google Scholar 

  79. 79

    Nigg, E. A. Centrosome aberrations: cause or consequence of cancer progression? Nat. Rev. Cancer 2, 815–825 (2002).

    PubMed  CAS  Google Scholar 

  80. 80

    Sibon, O. C., Kelkar, A., Lemstra, W. & Theurkauf, W. E. DNA-replication/DNA-damage-dependent centrosome inactivation in Drosophila embryos. Nat. Cell Biol. 2, 90–95 (2000).

    PubMed  CAS  Google Scholar 

  81. 81

    Hut, H. M. et al. Centrosomes split in the presence of impaired DNA integrity during mitosis. Mol. Biol. Cell 14, 1993–2004 (2003).

    PubMed  PubMed Central  CAS  Google Scholar 

  82. 82

    Kramer, A. et al. Centrosome-associated Chk1 prevents premature activation of cyclin-B–Cdk1 kinase. Nat. Cell Biol. 6, 884–891 (2004).

    PubMed  Google Scholar 

  83. 83

    Matsuyama, M. et al. Nuclear Chk1 prevents premature mitotic entry. J. Cell Sci. 124, 2113–2119 (2011).

    PubMed  CAS  Google Scholar 

  84. 84

    Balczon, R. et al. Dissociation of centrosome replication events from cycles of DNA synthesis and mitotic division in hydroxyurea-arrested Chinese hamster ovary cells. J. Cell Biol. 130, 105–115 (1995).

    PubMed  CAS  Google Scholar 

  85. 85

    Inanc, B., Dodson, H. & Morrison, C. G. A centrosome-autonomous signal that involves centriole disengagement permits centrosome duplication in G2 phase after DNA damage. Mol. Biol. Cell 21, 3866–3877 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  86. 86

    Loncarek, J., Hergert, P. & Khodjakov, A. Centriole reduplication during prolonged interphase requires procentriole maturation governed by Plk1. Curr. Biol. 20, 1277–1282 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  87. 87

    Wang, W. J., Soni, R. K., Uryu, K. & Bryan Tsou, M. F. The conversion of centrioles to centrosomes: essential coupling of duplication with segregation. J. Cell Biol. 193, 727–739 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  88. 88

    Hoyer-Fender, S. Centriole maturation and transformation to basal body. Semin. Cell Dev. Biol. 21, 142–147 (2010).

    PubMed  Google Scholar 

  89. 89

    Paintrand, M., Moudjou, M., Delacroix, H. & Bornens, M. Centrosome organization and centriole architecture: their sensitivity to divalent cations. J. Struct. Biol. 108, 107–128 (1992).

    PubMed  CAS  Google Scholar 

  90. 90

    Graser, S. et al. Cep164, a novel centriole appendage protein required for primary cilium formation. J. Cell Biol. 179, 321–330 (2007).

    PubMed  PubMed Central  CAS  Google Scholar 

  91. 91

    Mahjoub, M. R., Xie, Z. & Stearns, T. Cep120 is asymmetrically localized to the daughter centriole and is essential for centriole assembly. J. Cell Biol. 191, 331–346 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  92. 92

    Anderson, C. T. & Stearns, T. Centriole age underlies asynchronous primary cilium growth in mammalian cells. Curr. Biol. 19, 1498–1502 (2009).

    PubMed  PubMed Central  CAS  Google Scholar 

  93. 93

    Yamashita, Y. M., Jones, D. L. & Fuller, M. T. Orientation of asymmetric stem cell division by the APC tumor suppressor and centrosome. Science 301, 1547–1550 (2003).

    PubMed  PubMed Central  CAS  Google Scholar 

  94. 94

    Rusan, N. M. & Peifer, M. A role for a novel centrosome cycle in asymmetric cell division. J. Cell Biol. 177, 13–20 (2007).

    PubMed  PubMed Central  CAS  Google Scholar 

  95. 95

    Rebollo, E. et al. Functionally unequal centrosomes drive spindle orientation in asymmetrically dividing Drosophila neural stem cells. Dev. Cell 12, 467–474 (2007).

    PubMed  CAS  Google Scholar 

  96. 96

    Januschke, J. & Gonzalez, C. The interphase microtubule aster is a determinant of asymmetric division orientation in Drosophila neuroblasts. J. Cell Biol. 188, 693–706 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  97. 97

    Januschke, J., Llamazares, S., Reina, J. & Gonzalez, C. Drosophila neuroblasts retain the daughter centrosome. Nat. Commun. 2, 243 (2011).

    PubMed  PubMed Central  Google Scholar 

  98. 98

    Wang, X. et al. Asymmetric centrosome inheritance maintains neural progenitors in the neocortex. Nature 461, 947–955 (2009).

    PubMed  PubMed Central  CAS  Google Scholar 

  99. 99

    Fuentealba, L. C., Eivers, E., Geissert, D., Taelman, V. & De Robertis, E. M. Asymmetric mitosis: Unequal segregation of proteins destined for degradation. Proc. Natl Acad. Sci. USA 105, 7732–7737 (2008).

    PubMed  PubMed Central  CAS  Google Scholar 

  100. 100

    Lambert, J. D. & Nagy, L. M. Asymmetric inheritance of centrosomally localized mRNAs during embryonic cleavages. Nature 420, 682–686 (2002).

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank the members of the Nigg and Stearns labs for helpful discussion and apologise to our colleagues whose work we were unable to cite for space limitations. E.A.N. was supported by the Swiss National Science Foundation and T.S. was supported by the National Institutes of Health.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Erich A. Nigg or Tim Stearns.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nigg, E., Stearns, T. The centrosome cycle: Centriole biogenesis, duplication and inherent asymmetries. Nat Cell Biol 13, 1154–1160 (2011). https://doi.org/10.1038/ncb2345

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing