Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Gene bookmarking accelerates the kinetics of post-mitotic transcriptional re-activation

Abstract

Although transmission of the gene expression program from mother to daughter cells has been suggested to be mediated by gene bookmarking, the precise mechanism by which bookmarking mediates post-mitotic transcriptional re-activation has been unclear. Here, we used a real-time gene expression system to quantitatively demonstrate that transcriptional activation of the same genetic locus occurs with a significantly more rapid kinetics in post-mitotic cells versus interphase cells. RNA polymerase II large subunit (Pol II) and bromodomain protein 4 (BRD4) were recruited to the locus in a different sequential order on interphase initiation versus post-mitotic re-activation resulting from the recognition by BRD4 of increased levels of histone H4 Lys 5 acetylation (H4K5ac) on the previously activated locus. BRD4 accelerated the dynamics of messenger RNA synthesis by de-compacting chromatin and hence facilitating transcriptional re-activation. Using a real-time quantitative approach, we identified differences in the kinetics of transcriptional activation between interphase and post-mitotic cells that are mediated by a chromatin-based epigenetic mechanism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transcriptional activation of the same locus exhibits faster kinetics during post-mitotic activation than in the previous interphase.
Figure 2: Global chromatin decondensation or a second interphase induction is not sufficient to provide a more rapid transcriptional induction.
Figure 3: H4K5ac is a bookmark for active transcription in interphase and is maintained during mitosis.
Figure 4: BRD4 regulates efficient post-mitotic re-activation of transcription.
Figure 5: BRD4 facilitates post-mitotic transcriptional re-activation through chromatin de-compaction.
Figure 6: Molecular mapping of BRD4 function.

Similar content being viewed by others

References

  1. Lemon, B. & Tjian, R. Orchestrated response: a symphony of transcription factors for gene control. Genes Dev. 14, 2551–2569 (2000).

    Article  CAS  Google Scholar 

  2. Maniatis, T. & Reed, R. An extensive network of coupling among gene expression machines. Nature 416, 499–506 (2002).

    Article  CAS  Google Scholar 

  3. Orphanides, G. & Reinberg, D. A unified theory of gene expression. Cell 108, 439–451 (2002).

    Article  CAS  Google Scholar 

  4. McNally, J. G., Muller, W. G., Walker, D., Wolford, R. & Hager, G. L. The glucocorticoid receptor: rapid exchange with regulatory sites in living cells. Science 287, 1262–1265 (2000).

    Article  CAS  Google Scholar 

  5. Robinett, C. C. et al. In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition. J. Cell Biol. 135, 1685–1700 (1996).

    Article  CAS  Google Scholar 

  6. Tumbar, T., Sudlow, G. & Belmont, A. S. Large-scale chromatin unfolding and remodeling induced by VP16 acidic activation domain. J. Cell Biol. 145, 1341–1354 (1999).

    Article  CAS  Google Scholar 

  7. Yao, J., Munson, K. M., Webb, W. W. & Lis, J. T. Dynamics of heat shock factor association with native gene loci in living cells. Nature 442, 1050–1053 (2006).

    Article  CAS  Google Scholar 

  8. Janicki, S. M. et al. From silencing to gene expression: real-time analysis in single cells. Cell 116, 683–698 (2004).

    Article  CAS  Google Scholar 

  9. Ben-Ari, Y. et al. The life of an mRNA in space and time. J. Cell Sci. 123, 1761–1774 (2010).

    Article  CAS  Google Scholar 

  10. Probst, A. V., Dunleavy, E. & Almouzni, G. Epigenetic inheritance during the cell cycle. Nat. Rev. Mol. Cell Biol. 10, 192–206 (2009).

    Article  CAS  Google Scholar 

  11. Sarge, K. D. & Park-Sarge, O. K. Gene bookmarking: keeping the pages open. Trends Biochem. Sci. 30, 605–610 (2005).

    Article  CAS  Google Scholar 

  12. Sarge, K. D. & Park-Sarge, O. K. Mitotic bookmarking of formerly active genes: keeping epigenetic memories from fading. Cell Cycle 8, 818–823 (2009).

    Article  CAS  Google Scholar 

  13. Zaidi, S. K. et al. Mitotic bookmarking of genes: a novel dimension to epigenetic control. Nat. Rev. Genet. 11, 583–589 (2010).

    Article  CAS  Google Scholar 

  14. Rafalska-Metcalf, I. U., Powers, S. L., Joo, L. M., LeRoy, G. & Janicki, S. M. Single cell analysis of transcriptional activation dynamics. PLoS One 5, e10272 (2010).

    Article  Google Scholar 

  15. Metivier, R. et al. Estrogen receptor-α directs ordered, cyclical, and combinatorial recruitment of cofactors on a natural target promoter. Cell 115, 751–763 (2003).

    Article  CAS  Google Scholar 

  16. Darzacq, X. et al. In vivo dynamics of RNA polymerase II transcription. Nat. Struct. Mol. Biol. 14, 796–806 (2007).

    Article  CAS  Google Scholar 

  17. Kumaran, R. I. & Spector, D. L. A genetic locus targeted to the nuclear periphery in living cells maintains its transcriptional competence. J. Cell Biol. 180, 51–65 (2008).

    Article  CAS  Google Scholar 

  18. Prasanth, K. V., Sacco-Bubulya, P. A., Prasanth, S. G. & Spector, D. L. Sequential entry of components of the gene expression machinery into daughter nuclei. Mol. Biol. Cell 14, 1043–1057 (2003).

    Article  CAS  Google Scholar 

  19. Pines, J. & Rieder, C. L. Re-staging mitosis: a contemporary view of mitotic progression. Nat. Cell Biol. 3, E3–E6 (2001).

    Article  CAS  Google Scholar 

  20. Shav-Tal, Y. et al. Dynamics of single mRNPs in nuclei of living cells. Science 304, 1797–1800 (2004).

    Article  CAS  Google Scholar 

  21. Yang, Z., He, N. & Zhou, Q. Brd4 recruits P-TEFb to chromosomes at late mitosis to promote G1 gene expression and cell cycle progression. Mol. Cell Biol. 28, 967–976 (2008).

    Article  CAS  Google Scholar 

  22. Valls, E., Sanchez-Molina, S. & Martinez-Balbas, M. A. Role of histone modifications in marking and activating genes through mitosis. J. Biol. Chem. 280, 42592–42600 (2005).

    Article  CAS  Google Scholar 

  23. Prescott, D. M. & Bender, M. A. Synthesis of RNA and protein during mitosis in mammalian tissue culture cells. Exp. Cell Res. 26, 260–268 (1962).

    Article  Google Scholar 

  24. Muramoto, T., Muller, I., Thomas, G., Melvin, A. & Chubb, J. R. Methylation of H3K4 is required for inheritance of active transcriptional states. Curr. Biol. 20, 397–406 (2010).

    Article  CAS  Google Scholar 

  25. Dey, A., Nishiyama, A., Karpova, T., McNally, J. & Ozato, K. Brd4 marks select genes on mitotic chromatin and directs postmitotic transcription. Mol. Biol. Cell 20, 4899–4909 (2009).

    Article  CAS  Google Scholar 

  26. Jeppesen, P. Histone acetylation: a possible mechanism for the inheritance of cell memory at mitosis. Bioessays 19, 67–74 (1997).

    Article  CAS  Google Scholar 

  27. Zippo, A. et al. Histone crosstalk between H3S10ph and H4K16ac generates a histone code that mediates transcription elongation. Cell 138, 1122–1136 (2009).

    Article  CAS  Google Scholar 

  28. MacDonald, V. E. & Howe, L. J. Histone acetylation: where to go and how to get there. Epigenetics 4, 139–143 (2009).

    Article  CAS  Google Scholar 

  29. Edmunds, J. W., Mahadevan, L. C. & Clayton, A. L. Dynamic histone H3 methylation during gene induction: HYPB/Setd2 mediates all H3K36 trimethylation. EMBO J. 27, 406–420 (2008).

    Article  CAS  Google Scholar 

  30. LeRoy, G., Rickards, B. & Flint, S. J. The double bromodomain proteins Brd2 and Brd3 couple histone acetylation to transcription. Mol. Cell 30, 51–60 (2008).

    Article  CAS  Google Scholar 

  31. Kouskouti, A. & Talianidis, I. Histone modifications defining active genes persist after transcriptional and mitotic inactivation. EMBO J. 24, 347–357 (2005).

    Article  CAS  Google Scholar 

  32. Liu, Y. et al. Structural basis and binding properties of the second bromodomain of Brd4 with acetylated histone tails. Biochemistry 47, 6403–6417 (2008).

    Article  CAS  Google Scholar 

  33. Yang, Z. et al. Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4. Mol. Cell 19, 535–545 (2005).

    Article  CAS  Google Scholar 

  34. Jang, M. K. et al. The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription. Mol. Cell 19, 523–534 (2005).

    Article  CAS  Google Scholar 

  35. Masotti, A. et al. Comparison of different commercially available cationic liposome-DNA lipoplexes: Parameters influencing toxicity and transfection efficiency. Colloids Surf. B Biointerfaces 68, 136–144 (2009).

    Article  CAS  Google Scholar 

  36. Andrews, J. M., Newbound, G. C. & Lairmore, M. D. Transcriptional modulation of viral reporter gene constructs following induction of the cellular stress response. Nucleic Acids Res. 25, 1082–1084 (1997).

    Article  CAS  Google Scholar 

  37. Ip, J. Y. et al. Global impact of RNA polymerase II elongation inhibition on alternative splicing regulation. Genome Res. 21, 390–401 (2011).

    Article  CAS  Google Scholar 

  38. Filippakopoulos, P. et al. Selective inhibition of BET bromodomains. Nature 468, 1067–1073 (2010).

    Article  CAS  Google Scholar 

  39. Dey, A., Chitsaz, F., Abbasi, A., Misteli, T. & Ozato, K. The double bromodomain protein Brd4 binds to acetylated chromatin during interphase and mitosis. Proc. Natl Acad. Sci. USA 100, 8758–8763 (2003).

    Article  CAS  Google Scholar 

  40. Larsen, A. & Weintraub, H. An altered DNA conformation detected by S1 nuclease occurs at specific regions in active chick globin chromatin. Cell 29, 609–622 (1982).

    Article  CAS  Google Scholar 

  41. Michelotti, E. F., Sanford, S. & Levens, D. Marking of active genes on mitotic chromosomes. Nature 388, 895–899 (1997).

    Article  CAS  Google Scholar 

  42. Marushige, K. Activation of chromatin by acetylation of histone side chains. Proc. Natl Acad. Sci. USA 73, 3937–3941 (1976).

    Article  CAS  Google Scholar 

  43. Eskeland, R., Freyer, E., Leeb, M., Wutz, A. & Bickmore, W. A. Histone acetylation and the maintenance of chromatin compaction by polycomb repressive complexes. Cold Spring Harb. Symp. Quant. Biol. 75, 71–78 (2010).

    Article  CAS  Google Scholar 

  44. Eskeland, R. et al. Ring1B compacts chromatin structure and represses gene expression independent of histone ubiquitination. Mol. Cell 38, 452–464 (2010).

    Article  CAS  Google Scholar 

  45. Mochizuki, K. et al. The bromodomain protein Brd4 stimulates G1 gene transcription and promotes progression to S phase. J. Biol. Chem. 283, 9040–9048 (2008).

    Article  CAS  Google Scholar 

  46. Blobel, G. A. et al. A reconfigured pattern of MLL occupancy within mitotic chromatin promotes rapid transcriptional reactivation following mitotic exit. Mol. Cell 36, 970–983 (2009).

    Article  CAS  Google Scholar 

  47. Kanno, T. et al. Selective recognition of acetylated histones by bromodomain proteins visualized in living cells. Mol. Cell 13, 33–43 (2004).

    Article  CAS  Google Scholar 

  48. Umehara, T. et al. Structural basis for acetylated histone H4 recognition by the human BRD2 bromodomain. J. Biol. Chem. 285, 7610–7618 (2010).

    Article  CAS  Google Scholar 

  49. Umehara, T. et al. Structural implications for K5/K12-di-acetylated histone H4 recognition by the second bromodomain of BRD2. FEBS Lett. 584, 3901–3908 (2010).

    Article  CAS  Google Scholar 

  50. Bisgrove, D. A., Mahmoudi, T., Henklein, P. & Verdin, E. Conserved P-TEFb-interacting domain of BRD4 inhibits HIV transcription. Proc. Natl Acad. Sci. USA 104, 13690–13695 (2007).

    Article  CAS  Google Scholar 

  51. Wu, S. Y. & Chiang, C. M. The double bromodomain-containing chromatin adaptor Brd4 and transcriptional regulation. J. Biol. Chem. 282, 13141–13145 (2007).

    Article  CAS  Google Scholar 

  52. Chen, Y. C., Kappel, C., Beaudouin, J., Eils, R. & Spector, D. L. Live cell dynamics of promyelocytic leukemia nuclear bodies upon entry into and exit from mitosis. Mol. Biol. Cell 19, 3147–3162 (2008).

    Article  CAS  Google Scholar 

  53. Linkert, M. et al. Metadata matters: access to image data in the real world. J. Cell Biol. 189, 777–782 (2010).

    Article  CAS  Google Scholar 

  54. Mao, Y. S. et al. Essential and unique roles of PIP5K-γ and −α in Fcγ receptor-mediated phagocytosis. J. Cell Biol. 184, 281–296 (2009).

    Article  CAS  Google Scholar 

  55. Steger, D. J. et al. DOT1L/KMT4 recruitment and H3K79 methylation are ubiquitously coupled with gene transcription in mammalian cells. Mol. Cell Biol. 28, 2825–2839 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Singer (Albert Einstein College of Medicine, USA) for the MS2 clone, K. Ozato (NIH, USA) for the BRD4 clone, E. Verdin (UCSF, USA) for the BRD4-Δ1; Δ2; Δ1Δ2 constructs and C. D. Allis (The Rockfeller University, USA) for TH4 antibody. We greatly appreciate the gift of JQ1 from J. Bradner (Dana-Farber Cancer Institute, USA) and C. Vakoc. We thank C. Vakoc, A. A. Chakraborty and W. P. Tansey (Vanderbilt University, USA) for helpful comments and suggestions on ChIP assays. We also would like to thank Y. (S.) Mao, B. Zhang, M. S. Bodnar and M. R. Hübner, as well as other members of the Spector laboratory, for discussions and comments throughout the course of this work. This work was supported by a grant from NIH/NIGMS 42694, 42694-2OS1 (ARRA Supplement) to D.L.S.

Author information

Authors and Affiliations

Authors

Contributions

R.Z., T.N. and D.L.S. designed the research; R.Z. and T.N. carried out the experiments and analysed data; Y.F. wrote the MatLab software for quantitative analysis and also analysed data; Z.L. carried out the super-resolution structured illumination microscopy and locus size analysis. R.Z. and D.L.S. wrote the paper.

Corresponding author

Correspondence to David L. Spector.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2217 kb)

Supplementary Movie 1

Supplementary Information (MPG 383 kb)

Supplementary Movie 2

Supplementary Information (MPG 2468 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, R., Nakamura, T., Fu, Y. et al. Gene bookmarking accelerates the kinetics of post-mitotic transcriptional re-activation. Nat Cell Biol 13, 1295–1304 (2011). https://doi.org/10.1038/ncb2341

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2341

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing