Bcl-xL regulates metabolic efficiency of neurons through interaction with the mitochondrial F1FO ATP synthase

A Corrigendum to this article was published on 02 November 2011

This article has been updated


Anti-apoptotic Bcl2 family proteins such as Bcl-xL protect cells from death by sequestering apoptotic molecules, but also contribute to normal neuronal function. We find in hippocampal neurons that Bcl-xL enhances the efficiency of energy metabolism. Our evidence indicates that Bcl-xLinteracts directly with the β-subunit of the F1FO ATP synthase, decreasing an ion leak within the F1FO ATPase complex and thereby increasing net transport of H+ by F1FO during F1FO ATPase activity. By patch clamping submitochondrial vesicles enriched in F1FO ATP synthase complexes, we find that, in the presence of ATP, pharmacological or genetic inhibition of Bcl-xL activity increases the membrane leak conductance. In addition, recombinant Bcl-xL protein directly increases the level of ATPase activity of purified synthase complexes, and inhibition of endogenous Bcl-xL decreases the level of F1FO enzymatic activity. Our findings indicate that increased mitochondrial efficiency contributes to the enhanced synaptic efficacy found in Bcl-xL-expressing neurons.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Cellular ATP levels are altered by Bcl-xL overexpression or depletion in hippocampal neurons.
Figure 2: Bcl-xL alters oxygen uptake by neurons.
Figure 3: Bcl-xL is expressed in the mitochondrial inner membrane and interacts with ATP synthase.
Figure 4: Bcl-xL protein regulates ATPase activity.
Figure 5: ATP-sensitive H+ ion sequestration into F1FO ATPase vesicles (SMVs) is attenuated by Bcl-xL inhibitors, and by oligomycin and FCCP.
Figure 6: Pharmacological inhibition or depletion of Bcl-xL reverses leak closure in patch-clamp recordings of isolated ATP F1FO ATPase vesicles.

Change history

  • 27 September 2011

    In the version of this article initially published online and in print, the affiliation denoted by number 4 was incorrect.


  1. 1

    Banasiak, K. J., Xia, Y. & Haddad, G. G. Mechanisms underlying hypoxia-induced neuronal apoptosis. Prog. Neurobiol. 62, 215–249 (2000).

    Article  CAS  Google Scholar 

  2. 2

    Youle, R. J. & Strasser, A. The BCL-2 protein family: opposing activities that mediate cell death. Nat. Rev. Mol. Cell Biol. 9, 47–59 (2008).

    Article  CAS  Google Scholar 

  3. 3

    Fannjiang, Y. et al. BAK alters neuronal excitability and can switch from anti- to pro-death function during postnatal development. Dev. Cell 4, 575–585 (2003).

    Article  CAS  Google Scholar 

  4. 4

    Kim, H. et al. Hierarchical regulation of mitochondrion-dependent apoptosis by BCL-2 subfamilies. Nat. Cell Biol. 8, 1348–1358 (2006).

    Article  CAS  Google Scholar 

  5. 5

    Wang, C. & Youle, R. J. The role of mitochondria in apoptosis. Annu. Rev. Genet 43, 95–118 (2009).

    Article  CAS  Google Scholar 

  6. 6

    Hardwick, J. M. & Youle, R. J. SnapShot: BCL-2 proteins. Cell 138, 404.e1–404.e2 (2009).

    Article  CAS  Google Scholar 

  7. 7

    Gottlieb, E., Armour, S. M. & Thompson, C. B. Mitochondrial respiratory control is lost during growth factor deprivation. Proc. Natl Acad. Sci. USA 99, 12801–12806 (2002).

    Article  CAS  Google Scholar 

  8. 8

    Krajewska, M. et al. Dynamics of expression of apoptosis-regulatory proteins Bid, Bcl-2, Bcl-X, Bax and Bak during development of murine nervous system. Cell Death Differ. 9, 145–157 (2002).

    Article  CAS  Google Scholar 

  9. 9

    Li, H. et al. Bcl-xL induces Drp1-dependent synapse formation in cultured hippocampal neurons. Proc. Natl Acad. Sci. USA 105, 2169–2174 (2008).

    Article  Google Scholar 

  10. 10

    Berman, S. B. et al. Bcl-x L increases mitochondrial fission, fusion, and biomass in neurons. J. Cell Biol. 184, 707–719 (2009).

    Article  CAS  Google Scholar 

  11. 11

    Mozhayeva, M. G., Sara, Y., Liu, X. & Kavalali, E. T. Development of vesicle pools during maturation of hippocampal synapses. J. Neurosci. 22, 654–665 (2002).

    Article  CAS  Google Scholar 

  12. 12

    Verstreken, P. et al. Synaptic mitochondria are critical for mobilization of reserve pool vesicles at Drosophila neuromuscular junctions. Neuron 47, 365–378 (2005).

    Article  CAS  Google Scholar 

  13. 13

    Li, Z., Okamoto, K., Hayashi, Y. & Sheng, M. The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell 119, 873–887 (2004).

    Article  CAS  Google Scholar 

  14. 14

    Hickman, J. A., Hardwick, J. M., Kaczmarek, L. K. & Jonas, E. A. Bcl-xL inhibitor ABT-737 reveals a dual role for Bcl-xL in synaptic transmission. J. Neurophysiol. 99, 1515–1522 (2008).

    Article  CAS  Google Scholar 

  15. 15

    Manfredi, G., Yang, L., Gajewski, C. D. & Mattiazzi, M. Measurements of ATP in mammalian cells. Methods (Duluth) 26, 317–326 (2002).

    Article  CAS  Google Scholar 

  16. 16

    Oltersdorf, T. et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435, 677–681 (2005).

    Article  CAS  Google Scholar 

  17. 17

    Land, S. C., Porterfield, D. M., Sanger, R. H. & Smith, P. J. The self-referencing oxygen-selective microelectrode: detection of transmembrane oxygen flux from single cells. J. Exp. Biol. 202, 211–218 (1999).

    PubMed  CAS  Google Scholar 

  18. 18

    Brand, M. D. The efficiency and plasticity of mitochondrial energy transduction. Biochem. Soc. Trans. 33, 897–904 (2005).

    Article  CAS  Google Scholar 

  19. 19

    Harper, M. E., Bevilacqua, L., Hagopian, K., Weindruch, R. & Ramsey, J. J. Ageing, oxidative stress, and mitochondrial uncoupling. Acta Physiol. Scand. 182, 321–331 (2004).

    Article  CAS  Google Scholar 

  20. 20

    Andrews, Z. B., Diano, S. & Horvath, T. L. Mitochondrial uncoupling proteins in the CNS: in support of function and survival. Nat. Rev. Neurosci. 6, 829–840 (2005).

    Article  CAS  Google Scholar 

  21. 21

    Kunjilwar, K. K., Fishman, H. M., Englot, D. J., O’Neil, R. G. & Walters, E. T. Long-lasting hyperexcitability induced by depolarization in the absence of detectable Ca2+ signals. J. Neurophysiol. 101, 1351–1360 (2009).

    Article  CAS  Google Scholar 

  22. 22

    Bouvier, D. et al. EphA4 is localized in clathrin-coated and synaptic vesicles in adult mouse brain. J. Neurochem. 113, 153–165 (2010).

    Article  CAS  Google Scholar 

  23. 23

    Rolfe, D. F. & Brown, G. C. Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol. Rev. 77, 731–758 (1997).

    Article  CAS  Google Scholar 

  24. 24

    Hackenbrock, C. R., Rehn, T. G., Weinbach, E. C. & Lemasters, J. J. Oxidative phosphorylation and ultrastructural transformation in mitochondria in the intact ascites tumor cell. J. Cell Biol. 51, 123–137 (1971).

    Article  CAS  Google Scholar 

  25. 25

    Vander Heiden, M. G. et al. Bcl-xL promotes the open configuration of the voltage-dependent anion channel and metabolite passage through the outer mitochondrial membrane. J. Biol. Chem. 276, 19414–19419 (2001).

    Article  CAS  Google Scholar 

  26. 26

    Lovell, J. F. et al. Membrane binding by tBid initiates an ordered series of events culminating in membrane permeabilization by Bax. Cell 135, 1074–1084 (2008).

    Article  CAS  Google Scholar 

  27. 27

    Galonek, H. L. & Hardwick, J. M. Upgrading the BCL-2 network. Nat. Cell Biol. 8, 1317–1319 (2006).

    Article  CAS  Google Scholar 

  28. 28

    Boise, L. H. et al. Bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell 74, 597–608 (1993).

    Article  CAS  Google Scholar 

  29. 29

    Kaufmann, T. et al. Characterization of the signal that directs Bcl-x(L), but not Bcl-2, to the mitochondrial outer membrane. J. Cell Biol. 160, 53–64 (2003).

    Article  CAS  Google Scholar 

  30. 30

    Hockenbery, D., Nunez, G., Milliman, C., Schreiber, R. D. & Korsmeyer, S. J. Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 348, 334–336 (1990).

    Article  CAS  Google Scholar 

  31. 31

    Gotow, T. et al. Selective localization of Bcl-2 to the inner mitochondrial and smooth endoplasmic reticulum membranes in mammalian cells. Cell Death Differ. 7, 666–674 (2000).

    Article  CAS  Google Scholar 

  32. 32

    Kobayashi, T. et al. Ultrastructural localization of superoxide dismutase in human skin. Acta Derm. Venereol. 73, 41–45 (1993).

    PubMed  CAS  Google Scholar 

  33. 33

    Suzuki, K. et al. Manganese-superoxide dismutase in endothelial cells: localization and mechanism of induction. Am. J. Physiol. 265, H1173–H1178 (1993).

    PubMed  CAS  Google Scholar 

  34. 34

    Akai, F. et al. Immunocytochemical localization of manganese superoxide dismutase (Mn-SOD) in the hippocampus of the rat. Neurosci. Lett. 115, 19–23 (1990).

    Article  CAS  Google Scholar 

  35. 35

    Belzacq, A. S. et al. Bcl-2 and Bax modulate adenine nucleotide translocase activity. Cancer Res. 63, 541–546 (2003).

    PubMed  CAS  Google Scholar 

  36. 36

    Chan, T. L., Greenawalt, J. W. & Pedersen, P. L. Biochemical and ultrastructural properties of a mitochondrial inner membrane fraction deficient in outer membrane and matrix activities. J. Cell Biol. 45, 291–305 (1970).

    Article  CAS  Google Scholar 

  37. 37

    Ko, Y. H., Delannoy, M., Hullihen, J., Chiu, W. & Pedersen, P. L. Mitochondrial ATP synthasome. Cristae-enriched membranes and a multiwell detergent screening assay yield dispersed single complexes containing the ATP synthase and carriers for Pi and ADP/ATP. J. Biol. Chem. 278, 12305–12309 (2003).

    Article  CAS  Google Scholar 

  38. 38

    Nguyen, M. et al. Small molecule obatoclax (GX15-070) antagonizes MCL-1 and overcomes MCL-1-mediated resistance to apoptosis. Proc. Natl Acad. Sci. USA 104, 19512–19517 (2007).

    Article  Google Scholar 

  39. 39

    Caviston, T. L., Ketchum, C. J., Sorgen, P. L., Nakamoto, R. K. & Cain, B. D. Identification of an uncoupling mutation affecting the b subunit of F1F0 ATP synthase in Escherichia coli. FEBS Lett. 429, 201–206 (1998).

    Article  CAS  Google Scholar 

  40. 40

    Bonanni, L. et al. Zinc-dependent multi-conductance channel activity in mitochondria isolated from ischemic brain. J. Neurosci. 26, 6851–6862 (2006).

    Article  CAS  Google Scholar 

  41. 41

    Jonas, E. A., Buchanan, J. & Kaczmarek, L. K. Prolonged activation of mitochondrial conductances during synaptic transmission. Science 286, 1347–1350 (1999).

    Article  CAS  Google Scholar 

  42. 42

    Cheng, E. H., Levine, B., Boise, L. H., Thompson, C. B. & Hardwick, J. M. Bax-independent inhibition of apoptosis by Bcl-XL. Nature 379, 554–556 (1996).

    Article  CAS  Google Scholar 

  43. 43

    Rizzuto, R. et al. Ca2+ transfer from the ER to mitochondria: when, how and why. Biochim. Biophys. Acta 1787, 1342–1351 (2009).

    Article  CAS  Google Scholar 

  44. 44

    Kluck, R. M., Bossy-Wetzel, E., Green, D. R. & Newmeyer, D. D. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275, 1132–1136 (1997).

    Article  CAS  Google Scholar 

  45. 45

    Matsuyama, S., Xu, Q., Velours, J. & Reed, J. C. The mitochondrial F0F1-ATPase proton pump is required for function of the proapoptotic protein Bax in yeast and mammalian cells. Mol. Cell. 1, 327–336 (1998).

    Article  CAS  Google Scholar 

  46. 46

    Shchepina, L. A. et al. Oligomycin, inhibitor of the F0 part of H+-ATP-synthase, suppresses the TNF-induced apoptosis. Oncogene 21, 8149–8157 (2002).

    Article  CAS  Google Scholar 

  47. 47

    Chen, C. et al. Mitochondrial ATP synthasome: three-dimensional structure by electron microscopy of the ATP synthase in complex formation with carriers for Pi and ADP/ATP. J. Biol. Chem. 279, 31761–31768 (2004).

    Article  CAS  Google Scholar 

  48. 48

    O’Rourke, B. Evidence for mitochondrial K+ channels and their role in cardioprotection. Circul. Res. 94, 420–432 (2004).

    Article  CAS  Google Scholar 

  49. 49

    Crompton, M. The mitochondrial permeability transition pore and its role in cell death. Biochem. J. 341, 233–249 (1999).

    Article  CAS  Google Scholar 

  50. 50

    Costa, A. D. & Garlid, K. D. MitoKATP activity in healthy and ischemic hearts. J. Bioenerg. Biomembr. 41, 123–126 (2009).

    Article  CAS  Google Scholar 

  51. 51

    Liu, T. & O’Rourke, B. Regulation of mitochondrial Ca2+ and its effects on energetics and redox balance in normal and failing heart. J. Bioenerg. Biomembr. 41, 127–132 (2009).

    Article  CAS  Google Scholar 

  52. 52

    Porter, R. K. Uncoupling protein 1: a short-circuit in the chemiosmotic process. J. Bioenerg. Biomembr. 40, 457–461 (2008).

    Article  CAS  Google Scholar 

  53. 53

    Diano, S. et al. Uncoupling protein 2 prevents neuronal death including that occurring during seizures: a mechanism for preconditioning. Endocrinology 144, 5014–5021 (2003).

    Article  CAS  Google Scholar 

  54. 54

    Horvath, T. L., Diano, S. & Barnstable, C. Mitochondrial uncoupling protein 2 in the central nervous system: neuromodulator and neuroprotector. Biochem. Pharmacol. 65, 1917–1921 (2003).

    Article  CAS  Google Scholar 

  55. 55

    Sullivan, P. G., Springer, J. E., Hall, E. D. & Scheff, S. W. Mitochondrial uncoupling as a therapeutic target following neuronal injury. J. Bioenerg. Biomembr. 36, 353–356 (2004).

    Article  CAS  Google Scholar 

  56. 56

    Vander Heiden, M. G. et al. Outer mitochondrial membrane permeability can regulate coupled respiration and cell survival. Proc. Natl Acad. Sci. USA 97, 4666–4671 (2000).

    Article  CAS  Google Scholar 

  57. 57

    Chonghaile, T. N. & Letai, A. Mimicking the BH3 domain to kill cancer cells. Oncogene 27 (suppl. 1), S149–S157 (2008).

    Article  CAS  Google Scholar 

  58. 58

    Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009).

    Article  CAS  Google Scholar 

  59. 59

    Frezza, C. & Gottlieb, E. Mitochondria in cancer: not just innocent bystanders. Semin. Cancer Biol. 19, 4–11 (2009).

    PubMed  CAS  Google Scholar 

  60. 60

    Warburg, O. On respiratory impairment in cancer cells. Science 124, 269–270 (1956).

    PubMed  CAS  Google Scholar 

  61. 61

    Golshani-Hebroni, S. G. & Bessman, S. P. Hexokinase binding to mitochondria: a basis for proliferative energy metabolism. J. Bioenerg. Biomembr. 29, 331–338 (1997).

    Article  CAS  Google Scholar 

  62. 62

    Krueger, S. R., Kolar, A. & Fitzsimonds, R. M. The presynaptic release apparatus is functional in the absence of dendritic contact and highly mobile within isolated axons. Neuron 40, 945–957 (2003).

    Article  CAS  Google Scholar 

  63. 63

    Brewer, G. J. Isolation and culture of adult rat hippocampal neurons. J. Neurosci. Methods 71, 143–155 (1997).

    Article  CAS  Google Scholar 

  64. 64

    Lois, C., Hong, E. J., Pease, S., Brown, E. J. & Baltimore, D. Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science 295, 868–872 (2002).

    Article  CAS  Google Scholar 

  65. 65

    Komai, S. et al. Postsynaptic excitability is necessary for strengthening of cortical sensory responses during experience-dependent development. Nat. Neurosci. 9, 1125–1133 (2006).

    Article  CAS  Google Scholar 

  66. 66

    Buerli, T. et al. Efficient transfection of DNA or shRNA vectors into neurons using magnetofection. Nat. Protoc. 2, 3090–3101 (2007).

    Article  CAS  Google Scholar 

  67. 67

    Gajewski, C. D., Yang, L., Schon, E. A. & Manfredi, G. New insights into the bioenergetics of mitochondrial disorders using intracellular ATP reporters. Mol. Biol. Cell 14, 3628–3635 (2003).

    PubMed  PubMed Central  CAS  Google Scholar 

  68. 68

    Lotscher, H. R., deJong, C. & Capaldi, R. A. Inhibition of the adenosinetriphosphatase activity of Escherichia coli F1 by the water-soluble carbodiimide 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide is due to modification of several carboxyls in the β subunit. Biochemistry 23, 4134–4140 (1984).

    Article  CAS  Google Scholar 

  69. 69

    Nieuwenhuis, F. J., Kanner, B. I., Gutnick, D. L., Postma, P. W. & van Dam, K. Energy conservation in membranes of mutants of Escherichia coli defective in oxidative phosphorylation. Biochim. Biophys. Acta 325, 62–71 (1973).

    Article  CAS  Google Scholar 

  70. 70

    Tokuyasu, K. T. A technique for ultracryotomy of cell suspensions and tissues. J. Cell Biol. 57, 551–565 (1973).

    Article  CAS  Google Scholar 

  71. 71

    Lowry, O.H. & Passoneau, J.V. A Flexible System of Enzymatic Analysis (Academic, 1972).

    Google Scholar 

Download references


We thank L. K. Kaczmarek for scientific discussion and review of the manuscript. We thank C. Kinnally and N. Danial for the gift of Bax, Bak (DKO) MEFs and Institut de Recherches Servier, Croissy sur Seine, France for ABT-737. This work was supported by NIH NS064967 (E.A.J.) and NS37402 (J.M.H.).

Author information




K.N.A. and E.A.J. conceived the project, carried out most of the experiments, analysed the data and prepared the manuscript. H.L. and L.C. contributed experiments to Figs 1 and 2. L.B. contributed experiments to Fig. 6. L.Z., S.S. and M.A.M. contributed to Fig. 4. E.L. and P.N. contributed to Fig. 3. B.F. helped with Fig. 6. M.G. and C.R. contributed experiments to Fig. 3 and Supplementary Fig. S2. S.M.M. and E.M. contributed to Fig. 1. Y.C. and G.C.S. contributed to discussion. P.J.S.S. provided experimental design and discussion for Figs 1 and 2. J.M.H. designed Bcl-xL immunolocalization experiments, and contributed intellectually as well as in manuscript preparation.

Corresponding author

Correspondence to Elizabeth A. Jonas.

Ethics declarations

Competing interests

G.C. Shore is a shareholder in Gemin X Pharmaceuticals Inc.

Supplementary information

Supplementary Information

Supplementary Information (PDF 976 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Alavian, K., Li, H., Collis, L. et al. Bcl-xL regulates metabolic efficiency of neurons through interaction with the mitochondrial F1FO ATP synthase. Nat Cell Biol 13, 1224–1233 (2011). https://doi.org/10.1038/ncb2330

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing