Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The tumour suppressor L(3)mbt inhibits neuroepithelial proliferation and acts on insulator elements

Abstract

In Drosophila, defects in asymmetric cell division often result in the formation of stem-cell-derived tumours. Here, we show that very similar terminal brain tumour phenotypes arise through a fundamentally different mechanism. We demonstrate that brain tumours in l(3)mbt mutants originate from overproliferation of neuroepithelial cells in the optic lobes caused by derepression of target genes in the Salvador–Warts–Hippo (SWH) pathway. We use ChIP-sequencing to identify L(3)mbt binding sites and show that L(3)mbt binds to chromatin insulator elements. Mutating l(3)mbt or inhibiting expression of the insulator protein gene mod(mdg4) results in upregulation of SWH pathway reporters. As l(3)mbt tumours are rescued by mutations in bantam or yorkie or by overexpression of Expanded, the deregulation of SWH pathway target genes is an essential step in brain tumour formation. Therefore, very different primary defects result in the formation of brain tumours, which behave quite similarly in their advanced stages.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: l(3)mbt is necessary to prevent tumorous overproliferation of the larval central nervous system.
Figure 2: Candidate screen reveals a function for the SWH pathway in optic lobe proliferation.
Figure 3: SWH target genes are misregulated in l(3)mbt mutants.
Figure 4: The SWH pathway shows genetic interaction with l(3)mbt.
Figure 5: L(3)mbt localizes to the nucleus.
Figure 6: L(3)mbt binds at the TSS and regulates SWH target genes and JAK–STAT pathway activity.
Figure 7: L(3)mbt binds at insulator-bound regulatory domains and influences Abd-B expression

Similar content being viewed by others

References

  1. Doe, C. Q. Neural stem cells: balancing self-renewal with differentiation. Development 135, 1575–1587 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Neumuller, R. A. & Knoblich, J. A. Dividing cellular asymmetry: asymmetric cell division and its implications for stem cells and cancer. Genes Dev. 23, 2675–2699 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Prokop, A. & Technau, G. M. The origin of postembryonic neuroblasts in the ventral nerve cord of Drosophila melanogaster. Development 111, 79–88 (1991).

    CAS  PubMed  Google Scholar 

  4. Egger, B., Boone, J. Q., Stevens, N. R., Brand, A. H. & Doe, C. Q. Regulation of spindle orientation and neural stem cell fate in the Drosophila optic lobe. Neural Dev. 2, 1 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Yasugi, T., Umetsu, D., Murakami, S., Sato, M. & Tabata, T. Drosophila optic lobe neuroblasts triggered by a wave of proneural gene expression that is negatively regulated by JAK/STAT. Development 135, 1471–1480 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Hofbauer, A. & Campos-Ortega, J. A. Proliferation pattern and early differentiation of the optic lobes in Drosophila melanogaster. Roux Arch. Dev. Biol. 198, 264–274 (1990).

    Article  PubMed  Google Scholar 

  7. Green, P., Hartenstein, A. Y. & Hartenstein, V. The embryonic development of the Drosophila visual system. Cell Tissue Res. 273, 583–598 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. Toriya, M., Tokunaga, A., Sawamoto, K., Nakao, K. & Okano, H. Distinct functions of human numb isoforms revealed by misexpression in the neural stem cell lineage in the Drosophila larval brain. Dev. Neurosci. 28, 142–155 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Wang, W. et al. Notch signaling regulates neuroepithelial stem cell maintenance and neuroblast formation in Drosophila optic lobe development. Dev. Biol. 350, 414–428 (2010).

    Article  PubMed  Google Scholar 

  10. Ngo, K. T. et al. Concomitant requirement for Notch and Jak/Stat signaling during neuro-epithelial differentiation in the Drosophila optic lobe. Dev. Biol. 346, 284–295 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Reddy, B. V., Rauskolb, C. & Irvine, K. D. Influence of fat-hippo and notch signaling on the proliferation and differentiation of Drosophila optic neuroepithelia. Development 137, 2397–2408 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Egger, B., Gold, K. S. & Brand, A. H. Notch regulates the switch from symmetric to asymmetric neural stem cell division in the Drosophila optic lobe. Development 137, 2981–2987 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yasugi, T., Sugie, A., Umetsu, D. & Tabata, T. Coordinated sequential action of EGFR and Notch signaling pathways regulates proneural wave progression in the Drosophila optic lobe. Development 137, 3193–3203 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Gateff, E. Malignant neoplasms of genetic origin in Drosophila melanogaster. Science 200, 1448–1459 (1978).

    Article  CAS  PubMed  Google Scholar 

  15. Caussinus, E. & Gonzalez, C. Induction of tumor growth by altered stem-cell asymmetric division in Drosophila melanogaster. Nat. Genet. 37, 1125–1129 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Gateff, E., Loffler, T. & Wismar, J. A temperature-sensitive brain tumor suppressor mutation of Drosophila melanogaster: developmental studies and molecular localization of the gene. Mech. Dev. 41, 15–31 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Wismar, J. et al. The Drosophila melanogaster tumor suppressor gene lethal(3)malignant brain tumor encodes a proline-rich protein with a novel zinc finger. Mech. Dev. 53, 141–154 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Bonasio, R., Lecona, E. & Reinberg, D. MBT domain proteins in development and disease. Semin. Cell Dev. Biol. 21, 221–230 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Yohn, C. B., Pusateri, L., Barbosa, V. & Lehmann, R. l(3)malignant brain tumor and three novel genes are required for Drosophila germ-cell formation. Genetics 165, 1889–1900 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Lewis, P. W. et al. Identification of a Drosophila Myb-E2F2/RBF transcriptional repressor complex. Genes Dev. 18, 2929–2940 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Trojer, P. et al. L3MBTL1, a histone-methylation-dependent chromatin lock. Cell 129, 915–928 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Reddy, B. V. & Irvine, K. D. The Fat and Warts signaling pathways: new insights into their regulation, mechanism and conservation. Development 135, 2827–2838 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Zeng, Q. & Hong, W. The emerging role of the Hippo pathway in cell contact inhibition, organ size control, and cancer development in mammals. Cancer Cell 13, 188–192 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Saucedo, L. J. & Edgar, B. A. Filling out the Hippo pathway. Nat. Rev. Mol. Cell Biol. 8, 613–621 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Huang, J., Wu, S., Barrera, J., Matthews, K. & Pan, D. The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila homolog of YAP. Cell 122, 421–434 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Dong, J. et al. Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell 130, 1120–1133 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Oh, H. & Irvine, K. D. In vivo regulation of Yorkie phosphorylation and localization. Development 135, 1081–1088 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Wu, S., Liu, Y., Zheng, Y., Dong, J. & Pan, D. The TEAD/TEF family protein Scalloped mediates transcriptional output of the Hippo growth-regulatory pathway. Dev. Cell 14, 388–398 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Zhao, B. et al. TEAD mediates YAP-dependent gene induction and growth control. Genes Dev. 22, 1962–1971 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang, L. et al. The TEAD/TEF family of transcription factor Scalloped mediates Hippo signaling in organ size control. Dev. Cell 14, 377–387 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Goulev, Y. et al. Scalloped interacts with Yorkie, the nuclear effector of the Hippo tumor-suppressor pathway in Drosophila. Curr. Biol. 18, 435–441 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Peng, H. W., Slattery, M. & Mann, R. S. Transcription factor choice in the Hippo signaling pathway: homothorax and yorkie regulation of the microRNA bantam in the progenitor domain of the Drosophila eye imaginal disc. Genes Dev. 23, 2307–2319 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Thompson, B. J. & Cohen, S. M. The Hippo pathway regulates the bantam microRNA to control cell proliferation and apoptosis in Drosophila. Cell 126, 767–774 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Harvey, K. & Tapon, N. The Salvador–Warts–Hippo pathway—an emerging tumour-suppressor network. Nat. Rev. Cancer 7, 182–191 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Grimm, C. et al. Molecular recognition of histone lysine methylation by the Polycomb group repressor dSfmbt. EMBO J. 28, 1965–1977 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Janic, A., Mendizabal, L., Llamazares, S., Rossell, D. & Gonzalez, C. Ectopic expression of germline genes drives malignant brain tumor growth in Drosophila. Science 330, 1824–1827 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Valenzuela, L. & Kamakaka, R. T. Chromatin insulators. Annu. Rev. Genet. 40, 107–138 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Bushey, A. M., Dorman, E. R. & Corces, V. G. Chromatin insulators: regulatory mechanisms and epigenetic inheritance. Mol. Cell 32, 1–9 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lee, C. Y., Robinson, K. J. & Doe, C. Q. Lgl, Pins and aPKC regulate neuroblast self-renewal versus differentiation. Nature 439, 594–598 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Lee, C. Y., Wilkinson, B. D., Siegrist, S. E., Wharton, R. P. & Doe, C. Q. Brat is a Miranda cargo protein that promotes neuronal differentiation and inhibits neuroblast self-renewal. Dev. Cell 10, 441–449 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Bello, B., Reichert, H. & Hirth, F. The brain tumor gene negatively regulates neural progenitor cell proliferation in the larval central brain of Drosophila. Development 133, 2639–2648 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Betschinger, J., Mechtler, K. & Knoblich, J. A. Asymmetric segregation of the tumor suppressor brat regulates self-renewal in Drosophila neural stem cells. Cell 124, 1241–1253 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Bowman, S. K. et al. The tumor suppressors Brat and Numb regulate transit-amplifying neuroblast lineages in Drosophila. Dev. Cell 14, 535–546 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Haley, B., Hendrix, D., Trang, V. & Levine, M. A simplified miRNA-basedgene silencing method for Drosophila melanogaster. Dev. Biol. 321, 482–490 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pan, D. Hippo signaling in organ size control. Genes Dev. 21, 886–897 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Brennecke, J., Hipfner, D. R., Stark, A., Russell, R. B. & Cohen, S. M. Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113, 25–36 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Harvey, K. F., Pfleger, C. M. & Hariharan, I. K. The Drosophila Mst ortholog, Hippo, restricts growth and cell proliferation and promotes apoptosis. Cell 114, 457–467 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Bauer, S., Gagneur, J. & Robinson, P. N. GOing Bayesian: model-based gene set analysis of genome-scale data. Nucleic Acids Res. 38, 3523–3532 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bach, E. A. et al. GFP reporters detect the activation of the Drosophila JAK/STAT pathway in vivo. Gene Exp. Patterns 7, 323–331 (2007).

    Article  CAS  Google Scholar 

  50. Gateff, E. & Miyamoto, T. The tumor suppressor gene lethal (3) malignant brain tumor (l (3) mbt) of Drosophila melanogaster: multiple functions during development. Oncog. Cancer diagnosis 39, 135–141 (1990).

    Article  Google Scholar 

  51. Negre, N. et al. A comprehensive map of insulator elements for the Drosophila genome. PLoS Genet. 6, e1000814 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Zhao, K., Hart, C. M. & Laemmli, U. K. Visualization of chromosomal domains with boundary element-associated factor BEAF-32. Cell 81, 879–889 (1995).

    Article  CAS  PubMed  Google Scholar 

  53. Holohan, E. E. et al. CTCF genomic binding sites in Drosophila and the organisation of the bithorax complex. PLoS Genet. 3, e112 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Adryan, B. et al. Genomic mapping of Suppressor of Hairy-wing binding sites in Drosophila. Genome Biol. 8, R167 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Mohan, M. et al. The Drosophila insulator proteins CTCF and CP190 link enhancer blocking to body patterning. EMBO J. 26, 4203–4214 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pai, C. Y., Lei, E. P., Ghosh, D. & Corces, V. G. The centrosomal protein CP190 is a component of the gypsy chromatin insulator. Mol. Cell 16, 737–748 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Gause, M., Morcillo, P. & Dorsett, D. Insulation of enhancer-promoter communication by a gypsy transposon insert in the Drosophila cut gene: cooperation between suppressor of hairy-wing and modifier of mdg4 proteins. Mol. Cell Biol. 21, 4807–4817 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ohshiro, T., Yagami, T., Zhang, C. & Matsuzaki, F. Role of cortical tumour-suppressor proteins in asymmetric division of Drosophila neuroblast. Nature 408, 593–596 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Peng, C. Y., Manning, L., Albertson, R. & Doe, C. Q. The tumour-suppressor genes lgl and dlg regulate basal protein targeting in Drosophila neuroblasts. Nature 408, 596–600 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Fu, Y., Sinha, M., Peterson, C. L. & Weng, Z. The insulator binding protein CTCF positions 20 nucleosomes around its binding sites across the human genome. PLoS Genet. 4, e1000138 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Klymenko, T. et al. A Polycomb group protein complex with sequence-specific DNA-binding and selective methyl-lysine-binding activities. Genes Dev. 20, 1110–1122 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gotz, M. & Huttner, W. B. The cell biology of neurogenesis. Nat. Rev. Mol. Cell Biol. 6, 777–788 (2005).

    Article  PubMed  Google Scholar 

  63. Cao, X., Pfaff, S. L. & Gage, F. H. YAP regulates neural progenitor cell number via the TEA domain transcription factor. Genes Dev. 22, 3320–3334 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Fernandez-L, A. et al. YAP1 is amplified and up-regulated in hedgehog-associated medulloblastomas and mediates Sonic hedgehog-driven neural precursor proliferation. Genes Dev. 23, 2729–2741 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Northcott, P. A. et al. Multiple recurrent genetic events converge on control of histone lysine methylation in medulloblastoma. Nat. Genet. 41, 465–472 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Boedigheimer, M. & Laughon, A. Expanded: a gene involved in the control of cell proliferation in imaginal discs. Development 118, 1291–1301 (1993).

    CAS  PubMed  Google Scholar 

  67. Hipfner, D. R., Weigmann, K. & Cohen, S. M. The bantam gene regulates Drosophila growth. Genetics 161, 1527–1537 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Buszczak, M. et al. The Carnegie protein trap library: a versatile tool for Drosophila developmental studies. Genetics 175, 1505–1531 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Luo, L., Liao, Y. J., Jan, L. Y. & Jan, Y. N. Distinct morphogenetic functions of similar small GTPases: Drosophila Drac1 is involved in axonal outgrowth and myoblast fusion. Genes Dev. 8, 1787–1802 (1994).

    Article  CAS  PubMed  Google Scholar 

  70. Hrdlicka, L. et al. Analysis of twenty-four Gal4 lines in Drosophila melanogaster. Genesis 34, 51–57 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Wallace, H. A., Plata, M. P., Kang, H. J., Ross, M. & Labrador, M. Chromatin insulators specifically associate with different levels of higher-order chromatin organization in Drosophila. Chromosoma 119, 177–194 (2010).

    Article  PubMed  Google Scholar 

  72. Oktaba, K. et al. Dynamic regulation by polycomb group protein complexes controls pattern formation and the cell cycle in Drosophila. Dev. Cell 15, 877–889 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Nicol, J. W., Helt, G. A., Blanchard, S. G. J., Raja, A. & Loraine, A. E. The Integrated Genome Browser: free software for distribution and exploration of genome-scale datasets. Bioinformatics 25, 2730–2731 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bauer, S., Grossmann, S., Vingron, M. & Robinson, P. N. Ontologizer 2.0–a multifunctional tool for GO term enrichment analysis and data exploration. Bioinformatics 24, 1650–1651 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. van Helden, J. Regulatory sequence analysis tools. Nucleic. Acids Res. 31, 3593–3596 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Bailey, T. L. & Elkan, C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc. Int. Conf. Intell. Syst. Mol. Biol. 2, 28–36 (1994).

    CAS  PubMed  Google Scholar 

  79. Hertz, G. Z. & Stormo, G. D. Identifying DNA and protein patterns withstatistically significant alignments of multiple sequences. Bioinformatics 15, 563–577 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank I. Reichardt, N. Corsini, A. Fischer and C. Jueschke for comments on the manuscript; R. Neumueller and all former and present members of the Knoblich laboratory, as well as W. Wei, C. Girardot and J. Gagneur for discussions; R. Lehmann, D. Pan, L. Zhang, N. Tapon, B. Thompson, G. Halder, G. H. Baeg, M. Labrador, the Flytrap Yale, the Bloomington Drosophila Stock Center, the Vienna Drosophila RNAi Center and the Developmental Studies Hybridoma Bank for fly stocks, antibodies and constructs; P. Serrano Drozdowskyj and M. Novatchkova for bio-informatic support; M. Madalinski for affinity purification; E. Kleiner for technical assistance; K. Aumayr, P. Pasierbek and G. Schmauss for bio-optics support; and S. F. Lopez, S. Wculek and C. Valenta for fly work support. Work in J.A.K.’s laboratory is supported by the Austrian Academy of Sciences, the Austrian Science Fund (FWF) and the EU FP7 network EuroSystem.

Author information

Authors and Affiliations

Authors

Contributions

C.R. conceived and conducted experiments, coordinated the project and wrote the manuscript. K.O. conducted the bio-informatics analysis and conducted experiments. J.S. wrote the peakfinder software and mapped the Solexa reads. J.M. supervised the project. J.A.K. initiated, designed and supervised the project, conceived experiments and wrote the paper.

Corresponding author

Correspondence to Juergen A. Knoblich.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1964 kb)

Supplementary Table 1

Supplementary Information (XLS 1057 kb)

Supplementary Table 2

Supplementary Information (PDF 151 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richter, C., Oktaba, K., Steinmann, J. et al. The tumour suppressor L(3)mbt inhibits neuroepithelial proliferation and acts on insulator elements. Nat Cell Biol 13, 1029–1039 (2011). https://doi.org/10.1038/ncb2306

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2306

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer