Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Endolysosomal sorting of ubiquitylated caveolin-1 is regulated by VCP and UBXD1 and impaired by VCP disease mutations

Abstract

The AAA-ATPase VCP (also known as p97) cooperates with distinct cofactors to process ubiquitylated proteins in different cellular pathways1,2,3. VCP missense mutations cause a systemic degenerative disease in humans, but the molecular pathogenesis is unclear4,5. We used an unbiased mass spectrometry approach and identified a VCP complex with the UBXD1 cofactor, which binds to the plasma membrane protein caveolin-1 (CAV1) and whose formation is specifically disrupted by disease-associated mutations. We show that VCP–UBXD1 targets mono-ubiquitylated CAV1 in SDS-resistant high-molecular-weight complexes on endosomes, which are en route to degradation in endolysosomes6. Expression of VCP mutant proteins, chemical inhibition of VCP, or siRNA-mediated depletion of UBXD1 leads to a block of CAV1 transport at the limiting membrane of enlarged endosomes in cultured cells. In patient muscle, muscle-specific caveolin-3 accumulates in sarcoplasmic pools and specifically delocalizes from the sarcolemma. These results extend the cellular functions of VCP to mediating sorting of ubiquitylated cargo in the endocytic pathway and indicate that impaired trafficking of caveolin may contribute to pathogenesis in individuals with VCP mutations.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The VCP–UBXD1 chaperone complex binds to caveolin, and this interaction is specifically disrupted by IBMPFD-associated mutations in VCP.
Figure 2: VCP targets mono-ubiquitylated CAV1 in SDS-resistant oligomers.
Figure 3: Overexpression of VCP mutants or depletion of UBXD1 affect CAV1 transport to endolysosomes.
Figure 4: Chemical inhibition of VCP with DBeQ impairs CAV1 trafficking and delays degradation of the EGFR.
Figure 5: Mislocalization of caveolin in fibroblasts and muscle tissue of IBMPFD patients.

Similar content being viewed by others

References

  1. Jentsch, S. & Rumpf, S. Cdc48 (p97): A ‘molecular gearbox’ in the ubiquitin pathway? Trends Biochem. Sci. 32, 6–11 (2007).

    Article  CAS  Google Scholar 

  2. Meyer, H. & Popp, O. Role(s) of Cdc48/p97 in mitosis. Biochem. Soc. Trans. 36, 126–130 (2008).

    Article  CAS  Google Scholar 

  3. Ye, Y. Diverse functions with a common regulator: ubiquitin takes command of an AAA ATPase. J. Struct. Biol. 156, 29–40 (2006).

    Article  CAS  Google Scholar 

  4. Watts, G. D. et al. Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nat. Genet. 36, 377–381 (2004).

    Article  CAS  Google Scholar 

  5. Weihl, C. C., Pestronk, A. & Kimonis, V. E. Valosin-containing protein disease: inclusion body myopathy with Paget’s disease of the bone and fronto-temporal dementia. Neuromuscul. Disord. 19, 308–315 (2009).

    Article  Google Scholar 

  6. Hayer, A. et al. Caveolin-1 is ubiquitinated and targeted to intraluminal vesicles in endolysosomes for degradation. J. Cell Biol. 191, 615–629 (2010).

    Article  CAS  Google Scholar 

  7. Jarosch, E., Geiss-Friedlander, R., Meusser, B., Walter, J. & Sommer, T. Protein dislocation from the endoplasmic reticulum–pulling out the suspect. Traffic 3, 530–536 (2002).

    Article  CAS  Google Scholar 

  8. Meyer, H. H., Shorter, J. G., Seemann, J., Pappin, D. & Warren, G. A complex of mammalian Ufd1 and Npl4 links the AAA-ATPase, p97, to ubiquitin and nuclear transport pathways. EMBO J. 19, 2181–2192 (2000).

    Article  CAS  Google Scholar 

  9. Schuberth, C. & Buchberger, A. UBX domain proteins: major regulators of the AAA ATPase Cdc48/p97. Cell Mol. Life Sci. 65, 2360–2371 (2008).

    Article  CAS  Google Scholar 

  10. Alexandru, G. et al. UBXD7 binds multiple ubiquitin ligases and implicates p97 in HIF1α turnover. Cell 134, 804–816 (2008).

    Article  CAS  Google Scholar 

  11. Tresse, E. et al. VCP/p97 is essential for maturation of ubiquitin-containing autophagosomes and this function is impaired by mutations that cause IBMPFD. Autophagy 6, 217–227 (2010).

    Article  CAS  Google Scholar 

  12. Ju, J. S. et al. Valosin-containing protein (VCP) is required for autophagy and is disrupted in VCP disease. J. Cell Biol. 187, 875–888 (2009).

    Article  CAS  Google Scholar 

  13. Janiesch, P. C. et al. The ubiquitin-selective chaperone CDC-48/p97 links myosin assembly to human myopathy. Nat. Cell Biol. 9, 379–390 (2007).

    Article  CAS  Google Scholar 

  14. Ju, J. S., Miller, S. E., Hanson, P. I. & Weihl, C. C. Impaired protein aggregate handling and clearance underlie the pathogenesis of p97/VCP associated disease. J. Biol. Chem. 283, 30289–30299 (2008).

    Article  CAS  Google Scholar 

  15. Fernandez-Saiz, V. & Buchberger, A. Imbalances in p97 co-factor interactions in human proteinopathy. EMBO Rep. 11, 479–485 (2010).

    Article  CAS  Google Scholar 

  16. Weihl, C. C., Dalal, S., Pestronk, A. & Hanson, P. I. Inclusion body myopathy-associated mutations in p97/VCP impair endoplasmic reticulum-associated degradation. Hum. Mol. Genet. 15, 189–199 (2006).

    Article  CAS  Google Scholar 

  17. Ye, Y., Meyer, H. H. & Rapoport, T. A. Function of the p97-Ufd1-Npl4 complex in retrotranslocation from the ER to the cytosol: dual recognition of nonubiquitinated polypeptide segments and polyubiquitin chains. J. Cell Biol. 162, 71–84 (2003).

    Article  CAS  Google Scholar 

  18. Ramadan, K. et al. Cdc48/p97 promotes reformation of the nucleus by extracting the kinase Aurora B from chromatin. Nature 450, 1258–1262 (2007).

    Article  CAS  Google Scholar 

  19. Keller, A., Eng, J., Zhang, N., Li, X. J. & Aebersold, R. A uniform proteomics MS/MS analysis platform utilizing open XML file formats. Mol. Syst. Biol. 1, 0017 (2005).

    Article  Google Scholar 

  20. Iwawaki, T., Akai, R., Kohno, K. & Miura, M. A transgenic mouse model for monitoring endoplasmic reticulum stress. Nat. Med. 10, 98–102 (2004).

    Article  CAS  Google Scholar 

  21. Madsen, L. et al. Ubxd1 is a novel co-factor of the human p97 ATPase. Int. J. Biochem. Cell Biol. 40, 2927–2942 (2008).

    Article  CAS  Google Scholar 

  22. Parton, R. G. & Simons, K. The multiple faces of caveolae. Nat. Rev. Mol. Cell Biol. 8, 185–194 (2007).

    Article  CAS  Google Scholar 

  23. Hayer, A., Stoeber, M., Bissig, C. & Helenius, A. Biogenesis of caveolae: stepwise assembly of large caveolin and cavin complexes. Traffic 11, 361–382 (2010).

    Article  CAS  Google Scholar 

  24. Scheiffele, P. et al. Caveolin-1 and -2 in the exocytic pathway of MDCK cells. J. Cell Biol. 140, 795–806 (1998).

    Article  CAS  Google Scholar 

  25. Monier, S. et al. VIP21-caveolin, a membrane protein constituent of the caveolar coat, oligomerizes in vivo and in vitro. Mol. Biol. Cell 6, 911–927 (1995).

    Article  CAS  Google Scholar 

  26. Tagawa, A. et al. Assembly and trafficking of caveolar domains in the cell: caveolae as stable, cargo-triggered, vesicular transporters. J. Cell Biol. 170, 769–779 (2005).

    Article  CAS  Google Scholar 

  27. Mundy, D. I., Machleidt, T., Ying, Y. S., Anderson, R. G. & Bloom, G. S. Dual control of caveolar membrane traffic by microtubules and the actin cytoskeleton. J. Cell Sci. 115, 4327–4339 (2002).

    Article  CAS  Google Scholar 

  28. Haglund, K., Di Fiore, P. P. & Dikic, I. Distinct monoubiquitin signals in receptor endocytosis. Trends Biochem. Sci. 28, 598–603 (2003).

    Article  CAS  Google Scholar 

  29. Sargiacomo, M. et al. Oligomeric structure of caveolin: implications for caveolae membrane organization. Proc. Natl Acad. Sci. USA 92, 9407–9411 (1995).

    Article  CAS  Google Scholar 

  30. Pol, A. et al. Cholesterol and fatty acids regulate dynamic caveolin trafficking through the Golgi complex and between the cell surface and lipid bodies. Mol. Biol. Cell 16, 2091–2105 (2005).

    Article  CAS  Google Scholar 

  31. Rape, M. et al. Mobilization of processed, membrane-tethered SPT23 transcription factor by CDC48(UFD1/NPL4), a ubiquitin-selective chaperone. Cell 107, 667–677 (2001).

    Article  CAS  Google Scholar 

  32. Lee, H. et al. Caveolin-1 mutations (P132L and null) and the pathogenesis of breast cancer: caveolin-1 (P132L) behaves in a dominant-negative manner and caveolin-1 (−/−) null mice show mammary epithelial cell hyperplasia. Am. J. Pathol. 161, 1357–1369 (2002).

    Article  CAS  Google Scholar 

  33. Chou, T. F. et al. Reversible inhibitor of p97, DBeQ, impairs both ubiquitin-dependent and autophagic protein clearance pathways. Proc. Natl Acad. Sci. USA 108, 4834–4839 (2011).

    Article  CAS  Google Scholar 

  34. Ren, J., Pashkova, N., Winistorfer, S. & Piper, R. C. DOA1/UFD3 plays a role in sorting ubiquitinated membrane proteins into multivesicular bodies. J. Biol. Chem. 283, 21599–21611 (2008).

    Article  CAS  Google Scholar 

  35. Weihl, C. C., Miller, S. E., Hanson, P. I. & Pestronk, A. Transgenic expression of inclusion body myopathy associated mutant p97/VCP causes weakness and ubiquitinated protein inclusions in mice. Hum. Mol. Genet. 16, 919–928 (2007).

    Article  CAS  Google Scholar 

  36. Minetti, C. et al. Mutations in the caveolin-3 gene cause autosomal dominant limb-girdle muscular dystrophy. Nat. Genet. 18, 365–368 (1998).

    Article  CAS  Google Scholar 

  37. Goode, A. & Layfield, R. Recent advances in understanding the molecular basis of Paget disease of bone. J. Clin. Pathol. 63, 199–203 (2010).

    Article  CAS  Google Scholar 

  38. Skibinski, G. et al. Mutations in the endosomal ESCRTIII-complex subunit CHMP2B in frontotemporal dementia. Nat. Genet. 37, 806–808 (2005).

    Article  CAS  Google Scholar 

  39. Bolte, S. & Cordelieres, F. P. A guided tour into subcellular colocalization analysis in light microscopy. J. Microsc. 224, 213–232 (2006).

    Article  CAS  Google Scholar 

  40. MacLean, B., Eng, J. K., Beavis, R. C. & McIntosh, M. General framework for developing and evaluating database scoring algorithms using the TANDEM search engine. Bioinformatics 22, 2830–2832 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Helenius, M. Kaiser, P. Hanson and A. Pestronk for discussions and reagents, G. Dey for image analysis software, C. Brasseur and G. Csucs for technical help, and R. Deshaies for sharing results before publication. This work was supported by grants from the ETH (26/05-2 and 25/08-1), the DFG priority programme SPP1365/2 and the Fondation Suisse de recherche sur les maladies musculaires (to H.M.). C.C.W. is supported by the NIH (R01 AG031867) and the Muscular Dystrophy Association.

Author information

Authors and Affiliations

Authors

Contributions

D.R. generated cells, isolated VCP complexes and carried out the biochemical analyses with help from P.K., S.S. and S.B., and M.V. and M.B. carried out microscopy. A.H. helped design experiments and carried out the co-localization analysis. H.L, T.G., M.G. and R.A. carried out mass spectrometry analysis. C.L., R.H.B. and C.C.W. carried out electron microscopy and analysis of patient material. H.M. conceived the project and wrote the manuscript.

Corresponding authors

Correspondence to Conrad C. Weihl or Hemmo Meyer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2146 kb)

Supplementary Table 1

Supplementary Information (XLS 20 kb)

Supplementary Table 2

Supplementary Information (XLSX 10 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ritz, D., Vuk, M., Kirchner, P. et al. Endolysosomal sorting of ubiquitylated caveolin-1 is regulated by VCP and UBXD1 and impaired by VCP disease mutations. Nat Cell Biol 13, 1116–1123 (2011). https://doi.org/10.1038/ncb2301

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2301

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing