Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MAP4 and CLASP1 operate as a safety mechanism to maintain a stable spindle position in mitosis

Abstract

Correct positioning of the mitotic spindle is critical to establish the correct cell-division plane. Spindle positioning involves capture of astral microtubules and generation of pushing/pulling forces at the cell cortex. Here we show that the tau-related protein MAP4 and the microtubule rescue factor CLASP1 are essential for maintaining spindle position and the correct cell-division axis in human cells. We propose that CLASP1 is required to correctly capture astral microtubules, whereas MAP4 prevents engagement of excess dynein motors, thereby protecting the system from force imbalance. Consistent with this, MAP4 physically interacts with dynein–dynactin in vivo and inhibits dynein-mediated microtubule sliding in vitro. Depletion of MAP4, but not CLASP1, causes spindle misorientation in the vertical plane, demonstrating that force generators are under spatial control. These findings have wide biological importance, because spindle positioning is essential during embryogenesis and stem-cell homeostasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MAP4 is required for correct spindle architecture.
Figure 2: Loss of MAP4 leads to spindle position and orientation defects.
Figure 3: MAP4 depletion increases cortical astral-microtubule and lateral spindle-pole movements.
Figure 4: MAP4 suppresses dynein-dependent force generation.
Figure 5: Depletion of CLASP1 leads to spindle-positioning defects in the x y plane, but does not affect spindle orientation in z.
Figure 6: CLASP1, but not CLASP2, rescues the spindle mispositioning in CLASP1-depleted cells.
Figure 7: MAP4- and CLASP1-mediated control of cortical force generators ensures an accurate cell-division axis.

Similar content being viewed by others

References

  1. Knoblich, J. A. Mechanisms of asymmetric stem cell division. Cell 132, 583–597 (2008).

    Article  CAS  Google Scholar 

  2. Cowan, C. R. & Hyman, A. A. Asymmetric cell division in C. elegans: cortical polarity and spindle positioning. Annu. Rev. Cell Dev. Biol. 20, 427–453 (2004).

    Article  CAS  Google Scholar 

  3. Grill, S. W. & Hyman, A. A. Spindle positioning by cortical pulling forces. Dev. Cell 8, 461–465 (2005).

    Article  CAS  Google Scholar 

  4. Moore, J. K. & Cooper, J. A. Coordinating mitosis with cell polarity: molecular motors at the cell cortex. Semin. Cell Dev. Biol. 21, 283–289 (2010).

    Article  CAS  Google Scholar 

  5. Inoue, S., Turgeon, B. G., Yoder, O. C. & Aist, J. R. Role of fungal dynein in hyphal growth, microtubule organization, spindle pole body motility and nuclear migration. J. Cell Sci. 111, 1555–1566 (1998).

    CAS  PubMed  Google Scholar 

  6. Li, Y. Y., Yeh, E., Hays, T. & Bloom, K. Disruption of mitotic spindle orientation in a yeast dynein mutant. Proc. Natl Acad. Sci. USA 90, 10096–10100 (1993).

    Article  CAS  Google Scholar 

  7. Robinson, J. T., Wojcik, E. J., Sanders, M. A., McGrail, M. & Hays, T. S. Cytoplasmic dynein is required for the nuclear attachment and migration of centrosomes during mitosis in Drosophila. J. Cell Biol. 146, 597–608 (1999).

    Article  CAS  Google Scholar 

  8. Skop, A. R. & White, J. G. The dynactin complex is required for cleavage plane specification in early Caenorhabditis elegans embryos. Curr. Biol. 8, 1110–1116 (1998).

    Article  CAS  Google Scholar 

  9. Gonczy, P., Pichler, S., Kirkham, M. & Hyman, A. A. Cytoplasmic dynein is required for distinct aspects of MTOC positioning, including centrosome separation, in the one cell stage Caenorhabditis elegans embryo. J. Cell Biol. 147, 135–150 (1999).

    Article  CAS  Google Scholar 

  10. Kozlowski, C., Srayko, M. & Nedelec, F. Cortical microtubule contacts position the spindle in C. elegans embryos. Cell 129, 499–510 (2007).

    Article  CAS  Google Scholar 

  11. Grill, S. W., Howard, J., Schaffer, E., Stelzer, E. H. & Hyman, A. A. The distribution of active force generators controls mitotic spindle position. Science 301, 518–521 (2003).

    Article  CAS  Google Scholar 

  12. Théry, M. et al. The extracellular matrix guides the orientation of the cell division axis. Nat. Cell Biol. 7, 947–953 (2005).

    Article  Google Scholar 

  13. Théry, M., Jiménez-Dalmaroni, A., Racine, V., Bornens, M. & Jülicher, F. Experimental and theoretical study of mitotic spindle orientation. Nature 447, 493–496 (2007).

    Article  Google Scholar 

  14. Woodard, G. E. et al. Ric-8A and Gi α recruit LGN, NuMA, and dynein to the cell cortex to help orient the mitotic spindle. Mol. Cell Biol. 30, 3519–3530 (2010).

    Article  CAS  Google Scholar 

  15. Gonczy, P. Mechanisms of asymmetric cell division: flies and worms pave the way. Nat. Rev. Mol. Cell Biol. 9, 355–366 (2008).

    Article  Google Scholar 

  16. Du, Q. & Macara, I. G. Mammalian Pins is a conformational switch that links NuMA to heterotrimeric G proteins. Cell 119, 503–516 (2004).

    Article  CAS  Google Scholar 

  17. Couwenbergs, C. et al. Heterotrimeric G protein signaling functions with dynein to promote spindle positioning in C. elegans. J. Cell Biol. 179, 15–22 (2007).

    Article  CAS  Google Scholar 

  18. Thoma, C. et al. VHL loss causes spindle misorientation and chromosome instability. Nat. Cell Biol. 11, 994–1001 (2009).

    Article  CAS  Google Scholar 

  19. Rogers, S. L., Rogers, G. C., Sharp, D. J. & Vale, R. D. Drosophila EB1 is important for proper assembly, dynamics, and positioning of the mitotic spindle. J. Cell Biol. 158, 873–884 (2002).

    Article  CAS  Google Scholar 

  20. Green, R. A., Wollman, R. & Kaplan, K. B. APC and EB1 function together in mitosis to regulate spindle dynamics and chromosome alignment. Mol. Biol. Cell 16, 4609–4622 (2005).

    Article  CAS  Google Scholar 

  21. Wang, X. M., Peloquin, J. G., Zhai, Y., Bulinski, J. C. & Borisy, G. G. Removal of MAP4 from microtubules in vivo produces no observable phenotype at the cellular level. J. Cell Biol. 132, 345–357 (1996).

    Article  CAS  Google Scholar 

  22. Shiina, N. & Tsukita, S. Mutations at phosphorylation sites of Xenopus microtubule-associated protein 4 affect its microtubule-binding ability and chromosome movement during mitosis. Mol. Biol. Cell 10, 597–608 (1999).

    Article  CAS  Google Scholar 

  23. Cha, B., Cassimeris, L. & Gard, D. L. XMAP230 is required for normal spindle assembly in vivo and in vitro. J. Cell Sci. 112, 4337–4346 (1999).

    CAS  PubMed  Google Scholar 

  24. Archambault, V., D’Avino, P. P., Deery, M. J., Lilley, K. S. & Glover, D. M. Sequestration of Polo kinase to microtubules by phosphopriming-independent binding to Map205 is relieved by phosphorylation at a CDK site in mitosis. Genes Dev. 22, 2707–2720 (2008).

    Article  CAS  Google Scholar 

  25. Busson, S., Dujardin, D., Moreau, A., Dompierre, J. & De Mey, J.R. Dynein and dynactin are localized to astral microtubules and at cortical sites in mitotic epithelial cells. Curr. Biol. 8, 541–544 (1998).

    Article  CAS  Google Scholar 

  26. Dujardin, D. L. & Vallee, R. B. Dynein at the cortex. Curr. Opin. Cell Biol. 14, 44–49 (2002).

    Article  CAS  Google Scholar 

  27. Sharp, D. J., Rogers, G. C. & Scholey, J. M. Microtubule motors in mitosis. Nature 407, 41–47 (2000).

    Article  CAS  Google Scholar 

  28. Gibbons, I. R. et al. Potent inhibition of dynein adenosinetriphosphatase and of the motility of cilia and sperm flagella by vanadate. Proc. Natl Acad. Sci. USA 75, 2220–2224 (1978).

    Article  CAS  Google Scholar 

  29. Kobayashi, T., Martensen, T., Nath, J. & Flavin, M. Inhibition of dynein ATPase by vanadate, and its possible use as a probe for the role of dynein in cytoplasmic motility. Biochem. Biophys. Res. Commun. 81, 1313–1318 (1978).

    Article  CAS  Google Scholar 

  30. Mimori-Kiyosue, Y. et al. CLASP1 and CLASP2 bind to EB1 and regulate microtubule plus-end dynamics at the cell cortex. J. Cell Biol. 168, 141–153 (2005).

    Article  CAS  Google Scholar 

  31. Maiato, H. et al. Human CLASP1 is an outer kinetochore component that regulates spindle microtubule dynamics. Cell 113, 891–904 (2003).

    Article  CAS  Google Scholar 

  32. Pereira, A. et al. Mammalian CLASP1 and CLASP2 cooperate to ensure mitotic fidelity by regulating spindle and kinetochore function. Mol. Biol. Cell 17, 4526–4542 (2006).

    Article  CAS  Google Scholar 

  33. Grallert, A. et al. S. pombe CLASP needs dynein, not EB1 or CLIP170, to induce microtubule instability and slows polymerization rates at cell tips in a dynein-dependent manner. Genes Dev. 20, 2421–2436 (2006).

    Article  CAS  Google Scholar 

  34. Théry, M. & Bornens, M. Cell shape and cell division. Curr. Opin. Cell Biol. 18, 648–657 (2006).

    Article  Google Scholar 

  35. Peyre, E. et al. A lateral belt of cortical LGN and NuMA guides mitotic spindle movements and planar division in neuroepithelial cells. J. Cell Biol. 193, 141–154 (2011).

    Article  CAS  Google Scholar 

  36. Gaglio, T., Dionne, M. A. & Compton, D. A. Mitotic spindle poles are organized by structural and motor proteins in addition to centrosomes. J. Cell Biol. 138, 1055–1066 (1997).

    Article  CAS  Google Scholar 

  37. Musacchio, A. & Salmon, E. D. The spindle-assembly checkpoint in space and time. Nat. Rev. Mol. Cell Biol. 8, 379–393 (2007).

    Article  CAS  Google Scholar 

  38. Dixit, R., Ross, J., Goldman, Y. & Holzbaur, E. L. F. Differential regulation of dynein and kinesin motor proteins by tau. Science 319, 1086–1089 (2008).

    Article  CAS  Google Scholar 

  39. Paschal, B. M., Obar, R. A. & Vallee, R. B. Interaction of brain cytoplasmic dynein and MAP2 with a common sequence at the C terminus of tubulin. Nature 342, 569–572 (1989).

    Article  CAS  Google Scholar 

  40. Jaqaman, K. et al. Kinetochore alignment within the metaphase plate is regulated by centromere stiffness and microtubule depolymerases. J. Cell Biol. 188, 665–679 (2010).

    Article  CAS  Google Scholar 

  41. Draviam, V. M., Shapiro, I., Aldridge, B. & Sorger, P. K. Misorientation and reduced stretching of aligned sister kinetochores promote chromosome missegregation in EB1- or APC-depleted cells. EMBO J. 25, 2814–2827 (2006).

    Article  CAS  Google Scholar 

  42. McClelland, S.E. & McAinsh, A.D. Hydrodynamic analysis of human kinetochore complexes during mitosis. Methods Mol. Biol. 545, 81–98 (2009).

    Article  CAS  Google Scholar 

  43. McAinsh, A. D., Meraldi, P., Draviam, V. M., Toso, A. & Sorger, P. K. The human kinetochore proteins Nnf1R and Mcm21R are required for accurate chromosome segregation. EMBO J. 25, 4033–4049 (2006).

    Article  CAS  Google Scholar 

  44. Straube, A. & Merdes, A. EB3 regulates microtubule dynamics at the cell cortex and is required for myoblast elongation and fusion. Curr. Biol. 17, 1318–1325 (2007).

    Article  CAS  Google Scholar 

  45. Shaner, N. C. et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol. 22, 1567–1572 (2004).

    Article  CAS  Google Scholar 

  46. Schlieper, D., von Wilcken-Bergmann, B., Schmidt, M., Sobek, H. & Muller-Hill, B. A positive selection vector for cloning of long polymerase chain reaction fragments based on a lethal mutant of the crp gene of Escherichia coli. Anal. Biochem. 257, 203–209 (1998).

    Article  CAS  Google Scholar 

  47. Ross, J. L., Wallace, K., Shuman, H., Goldman, Y. E. & Holzbaur, E. L. Processive bidirectional motion of dynein–dynactin complexes in vitro. Nat. Cell Biol. 8, 562–570 (2006).

    Article  CAS  Google Scholar 

  48. Bingham, J. B., King, S. J. & Schroer, T. A. Purification of dynactin and dynein from brain tissue. Methods Enzymol. 298, 171–184 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Garrod for selecting the double stable EB3–tdTomato eGFP–CENP-A cell line, K. Kaseda for selecting the mCherry– α-tubulin cell line and D. Roth for assistance with cloning. We are grateful to I. Titley at the Institute of Cancer Research in Sutton, UK, for help with cell sorting, N. Galjart for the gift of CLASP1 antiserum and A. Akhmanova for providing CLASP1 and CLASP2 rescue constructs. This work was supported by programme grants to A.D.M. and A.S. from Marie Curie Cancer Care and a Fundação para a Ciência e Tecnologia fellowship (C.P.S.). L.C. is funded by the NSF-sponsored Institute for Cellular Engineering IGERT programme grant DGE-0654128 and J.L.R. is supported by a Cottrell Scholars Award from the Research Corporation.

Author information

Authors and Affiliations

Authors

Contributions

This project was co-directed by A.S. and A.D.M. Project conception, planning and data interpretation was carried out by C.P.S., B.M., A.S. and A.D.M. Live- and fixed-cell imaging of spindle geometry, positioning and mitotic progression, as well as co-immunoprecipitation experiments, were carried out and analysed by C.P.S. Live-cell imaging of astral-microtubule dynamics, as well as cloning and purification of MAP4, was carried out and analysed by B.M. Dynein purification and gliding assays were carried out by L.C. and J.L.R. and patterned-substrate experiments by A.S. and A.D.M. The manuscript was prepared by A.S. and A.D.M. with contributions by C.P.S., B.M. and J.L.R.

Corresponding authors

Correspondence to Anne Straube or Andrew D. McAinsh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1503 kb)

Supplementary Movie 1

Supplementary Information (MOV 397 kb)

Supplementary Movie 2

Supplementary Information (MOV 380 kb)

Supplementary Movie 3

Supplementary Information (MOV 302 kb)

Supplementary Movie 4

Supplementary Information (MOV 627 kb)

Supplementary Movie 5

Supplementary Information (MOV 15399 kb)

Supplementary Movie 6

Supplementary Information (MOV 12724 kb)

Supplementary Movie 7

Supplementary Information (MOV 16380 kb)

Supplementary Movie 8

Supplementary Information (MOV 19847 kb)

Supplementary Movie 9

Supplementary Information (MOV 15095 kb)

Supplementary Movie 10

Supplementary Information (MOV 28896 kb)

Supplementary Movie 11

Supplementary Information (MOV 138 kb)

Supplementary Movie 12

Supplementary Information (MOV 155 kb)

Supplementary Movie 13

Supplementary Information (MOV 265 kb)

Supplementary Movie 14

Supplementary Information (MOV 21619 kb)

Supplementary Movie 15

Supplementary Information (MOV 16539 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samora, C., Mogessie, B., Conway, L. et al. MAP4 and CLASP1 operate as a safety mechanism to maintain a stable spindle position in mitosis. Nat Cell Biol 13, 1040–1050 (2011). https://doi.org/10.1038/ncb2297

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2297

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing