Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

N-WASP regulates the epithelial junctional actin cytoskeleton through a non-canonical post-nucleation pathway

Abstract

N-WASP is a major cytoskeletal regulator that stimulates Arp2/3-mediated actin nucleation. Here, we identify a nucleation-independent pathway by which N-WASP regulates the cytoskeleton and junctional integrity at the epithelial zonula adherens. N-WASP is a junctional protein whose depletion decreased junctional F-actin content and organization. However, N-WASP (also known as WASL) RNAi did not affect junctional actin nucleation, dominantly mediated by Arp2/3. Furthermore, the junctional effect of N-WASP RNAi was rescued by an N-WASP mutant that cannot directly activate Arp2/3. Instead, N-WASP stabilized newly formed actin filaments and facilitated their incorporation into apical rings at the zonula adherens. A major physiological effect of N-WASP at the zonula adherens thus occurs through a non-canonical pathway that is distinct from its capacity to activate Arp2/3. Indeed, the junctional impact of N-WASP was mediated by the WIP-family protein, WIRE, which binds to the N-WASP WH1 domain. We conclude that N-WASP–WIRE serves as an integrator that couples actin nucleation with the subsequent steps of filament stabilization and organization necessary for zonula adherens integrity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The epithelial junctional actin cytoskeleton contains two pools of actin filaments that are predominantly nucleated at the membrane.
Figure 2: N-WASP regulates the junctional actin cytoskeleton without affecting filament nucleation.
Figure 3: N-WASP regulates junctional filament stability and organization by a VCA-independent, WH1-dependent mechanism.
Figure 4: The N-WASP WH1 domain regulates junctional filament stability and dynamic spatiotemporal organization of F-actin.
Figure 5: N-WASP recruits WIRE to regulate the junctional actin cytoskeleton.
Figure 6: Junctional biogenesis is perturbed by N-WASP or WIRE knockdown.

Similar content being viewed by others

References

  1. Harris, T. J. & Tepass, U. Adherens junctions: from molecules to morphogenesis. Nat. Rev. Mol. Cell Biol. 11, 502–514 (2010).

    CAS  PubMed  Google Scholar 

  2. Mege, R. M., Gavard, J. & Lambert, M. Regulation of cell–cell junctions by the cytoskeleton. Curr. Opin. Cell Biol. 18, 541–548 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Boller, K., Vestweber, D. & Kemler, R. Cell-adhesion molecule uvomorulin is localized in the intermediate junctions of adult intestinal epithelial cells. J. Cell Biol. 100, 327–332 (1985).

    Article  CAS  PubMed  Google Scholar 

  4. Sawyer, J. K., Harris, N. J., Slep, K. C., Gaul, U. & Peifer, M. The Drosophila afadin homologue Canoe regulates linkage of the actin cytoskeleton to adherens junctions during apical constriction. J. Cell Biol. 186, 57–73 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Costa, M. et al. A putative catenin–cadherin system mediates morphogenesis of the Caenorhabditis elegans embryo. J. Cell Biol. 141, 297–308 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Miyaguchi, K. Ultrastructure of the zonula adherens revealed by rapid-freeze deep-etching. J. Struct. Biol. 132, 169–178 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Hirokawa, N., Keller, T. C., 3rd, Chasan, R & Mooseker, M. S. Mechanism of brush border contractility studied by the quick-freeze, deep-etch method. J. Cell Biol. 96, 1325–1336 (1983).

    Article  CAS  PubMed  Google Scholar 

  8. Kwiatkowski, A. V. et al. In vitro and in vivo reconstitution of the cadherin–catenin–actin complex from Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 107, 14591–14596 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Smutny, M. et al. Myosin II isoforms identify distinct functional modules that support integrity of the epithelial zonula adherens. Nat. Cell Biol. 12, 696–702 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yamada, S., Pokutta, S., Drees, F., Weis, W. I. & Nelson, W. J. Deconstructing the cadherin–catenin–actin complex. Cell 123, 889–901 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Padrick, S. B. & Rosen, M. K. Physical mechanisms of signal integration by WASP family proteins. Annu. Rev. Biochem. 79, 707–735 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pollard, T. D. & Borisy, G. G. Cellular motility driven by assembly and disassembly of actin filaments. Cell 112, 453–465 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Machesky, L. M. & Insall, R. H. Signaling to actin dynamics. J. Cell Biol. 146, 267–272 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Miki, H., Sasaki, T., Takai, Y. & Takenawa, T. Induction of filopodium formation by a WASP-related actin-depolymerizing protein N-WASP. Nature 391, 93–96 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Shewan, A. M. et al. Myosin 2 is a key rho kinase target necessary for the local concentration of E-cadherin at cell–cell contacts. Mol. Biol. Cell 16, 4531–4532 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang, J. et al. Actin at cell–cell junctions is composed of two dynamic and functional populations. J. Cell Sci. 118, 5549–5562 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Chesarone, M. A. & Goode, B. L. Actin nucleation and elongation factors: mechanisms and interplay. Curr. Opin. Cell Biol. 21, 28–37 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Symons, M. H. & Mitchison, T. J. Control of actin polymerization in live and permeabilized fibroblasts. J. Cell Biol. 114, 503–513 (1991).

    Article  CAS  PubMed  Google Scholar 

  19. Verma, S. et al. Arp2/3 activity is necessary for efficient formation of E-cadherin adhesive contacts. J. Biol. Chem. 279, 34062–34070 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Chan, A. Y. et al. EGF stimulates an increase in actin nucleation and filament number at the leading edge of the lamellipod in mammary adenocarcinoma cells. J. Cell Sci. 111, 199–211 (1998).

    CAS  PubMed  Google Scholar 

  21. Kovacs, E. M., Goodwin, M., Ali, R. G., Paterson, A. D. & Yap, A. S. Cadherin-directed actin assembly: E-cadherin physically associates with the Arp2/3 complex to direct actin assembly in nascent adhesive contacts. Curr. Biol. 12, 379–382 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Nolen, B. J. et al. Characterization of two classes of small molecule inhibitors of Arp2/3 complex. Nature 460, 1031–1034 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ivanov, A. I., Hunt, D., Utech, M., Nusrat, A. & Parkos, C. A. Differential roles for actin polymerization and a myosin II motor in assembly of the epithelial apical junctional complex. Mol. Biol. Cell 16, 2636–2650 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kueh, H. Y., Charras, G. T., Mitchison, T. J. & Brieher, W. M. Actin disassembly by cofilin, coronin, and Aip1 occurs in bursts and is inhibited by barbed-end cappers. J. Cell Biol. 182, 341–353 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yarar, D., To, W., Abo, A. & Welch, M. D. The Wiskott-Aldrich syndrome protein directs actin-based motility by stimulating actin nucleation with the Arp2/3 complex. Curr. Biol. 9, 555–558 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Rohatgi, R. et al. The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell 97, 221–231 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Kato, M. et al. WICH, a novel verprolin homology domain-containing protein that functions cooperatively with N-WASP in actin-microspike formation. Biochem. Biophys. Res. Commun. 291, 41–47 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Aspenstrom, P. The mammalian verprolin homologue WIRE participates in receptor-mediated endocytosis and regulation of the actin filament system by distinct mechanisms. Exp. Cell Res. 298, 485–498 (2004).

    Article  PubMed  Google Scholar 

  29. Anton, I. M., Jones, G. E., Wandosell, F., Geha, R. & Ramesh, N. WASP-interacting protein (WIP): working in polymerisation and much more. Trends Cell Biol. 17, 555–562 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Chou, H. C. et al. WIP regulates the stability and localization of WASP to podosomes in migrating dendritic cells. Curr. Biol. 16, 2337–2344 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Volkman, B. F., Prehoda, K. E., Scott, J. A., Peterson, F. C. & Lim, W. A. Structure of the N-WASP EVH1 domain-WIP complex: insight into the molecular basis of Wiskott-Aldrich Syndrome. Cell 111, 565–576 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Peterson, F. C. et al. Multiple WASP-interacting protein recognition motifs are required for a functional interaction with N-WASP. J. Biol. Chem. 282, 8446–8453 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Moreau, V. et al. A complex of N-WASP and WIP integrates signalling cascades that lead to actin polymerization. Nat. Cell Biol. 2, 441–448 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Kato, M. & Takenawa, T. WICH, a member of WASP-interacting protein family,cross-links actin filaments. Biochem. Biophys. Res. Commun. 328, 1058–1066 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Otani, T., Ichii, T., Aono, S. & Takeichi, M. Cdc42 GEF Tuba regulates the junctional configuration of simple epithelial cells. J. Cell Biol. 175, 135–146 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Martinez-Quiles, N. et al. WIP regulates N-WASP-mediated actin polymerization and filopodium formation. Nat. Cell Biol. 3, 484–491 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Leibfried, A., Fricke, R., Morgan, M. J., Bogdan, S. & Bellaiche, Y. Drosophila Cip4 and WASp define a branch of the Cdc42-Par6-aPKC pathway regulating E-cadherin endocytosis. Curr. Biol. 18, 1639–1648 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Schindelhauer, D. et al. Wiskott-Aldrich syndrome: no strict genotype-phenotype correlations but clustering of missense mutations in the amino-terminal part of the WASP gene product. Hum. Genet. 98, 68–76 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Watanabe, N. & Mitchison, T. J. Single-molecule speckle analysis of actin filament turnover in lamellipodia. Science 295, 1083–1086 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Lommel, S. et al. Actin pedestal formation by enteropathogenic Escherichia coli and intracellular motility of Shigella flexneri are abolished in N-WASP-defective cells. EMBO Rep. 2, 850–857 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Grigoriev, I. et al. STIM1 is a MT-plus-end-tracking protein involved in remodeling of the ER. Curr. Biol. 18, 177–182 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Reynolds, A. et al. Rational siRNA design for RNA interference. Nat. Biotechnol. 22, 326–330 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Rubinson, D. A. et al. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat. Genet. 33, 401–406 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Vitriol, E. A., Uetrecht, A. C., Shen, F., Jacobson, K. & Bear, J. E. Enhanced EGFP-chromophore-assisted laser inactivation using deficient cells rescued with functional EGFP-fusion proteins. Proc. Natl Acad. Sci. USA 104, 6702–6707 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank our laboratory colleagues for their advice and support and other colleagues for the gifts of reagents, notably S. Thomas (Birmingham University, UK) for an early gift of N-WASP antibodies and J. Demmers (Erasmus MC, Rotterdam, The Netherlands) for proteomics analysis. This work was financially supported by the National Health and Medical Council of Australia and the Human Frontiers Science Program. A.S.Y. is a Research Fellow of the NHMRC. Confocal imaging was carried out at the IMB/ACRF Cancer Biology Imaging Facility, established with the generous support of the Australian Cancer Research Foundation.

Author information

Authors and Affiliations

Authors

Contributions

E.M.K., R.G.A. and A.S.Y. conceived the project and designed experiments; E.M.K., S.V. and R.G.A. carried out experiments; A.R. developed reagents; A.A. carried out protein partner analysis; E.M.K., N.A.H. and A.S.Y. analysed the data; E.M.K. and A.S.Y. wrote the manuscript.

Corresponding author

Correspondence to Alpha S. Yap.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1873 kb)

Supplementary Movie 1

Supplementary Information (MOV 704 kb)

Supplementary Movie 2

Supplementary Information (MOV 697 kb)

Supplementary Movie 3

Supplementary Information (MOV 959 kb)

Supplementary Movie 4

Supplementary Information (MOV 1286 kb)

Supplementary Movie 5

Supplementary Information (MOV 633 kb)

Supplementary Movie 6

Supplementary Information (MOV 959 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovacs, E., Verma, S., Ali, R. et al. N-WASP regulates the epithelial junctional actin cytoskeleton through a non-canonical post-nucleation pathway. Nat Cell Biol 13, 934–943 (2011). https://doi.org/10.1038/ncb2290

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2290

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing