Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Opposing effects of Tcf3 and Tcf1 control Wnt stimulation of embryonic stem cell self-renewal

Abstract

The co-occupancy of Tcf3 with Oct4, Sox2 and Nanog on embryonic stem cell (ESC) chromatin indicated that Tcf3 has been suggested to play an integral role in a poorly understood mechanism underlying Wnt-dependent stimulation of mouse ESC self-renewal of mouse ESCs. Although the conventional view of Tcf proteins as the β-catenin-binding effectors of Wnt signalling suggested Tcf3–β-catenin activation of target genes would stimulate self-renewal, here we show that an antagonistic relationship between Wnt3a and Tcf3 on gene expression regulates ESC self-renewal. Genetic ablation of Tcf3 replaced the requirement for exogenous Wnt3a or GSK3 inhibition for ESC self-renewal, demonstrating that inhibition of Tcf3 repressor is the necessary downstream effect of Wnt signalling. Interestingly, both Tcf3–β-catenin and Tcf1–β-catenin interactions contributed to Wnt stimulation of self-renewal and gene expression, and the combination of Tcf3 and Tcf1 recruited Wnt-stabilized β-catenin to Oct4 binding sites on ESC chromatin. This work elucidates the molecular link between the effects of Wnt and the regulation of the Oct4/Sox2/Nanog network.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tcf3 regulates the Wnt stimulation and GSK3 inhibition of ESC self-renewal.
Figure 2: Wnt3a stimulates and Tcf3 inhibits expression of Oct4- and Nanog regulated genes.
Figure 3: Nanog-independence of Wnt3a/Tcf3-mediated effects on gene expression.
Figure 4: A combination of Tcf3–β-catenin-dependent and Tcf3–β-catenin-independent mechanisms mediates Wnt3a stimulation of self-renewal and target gene expression.
Figure 5: Endogenous Tcf1 stimulates Tcf3–β-catenin-independent activation of Wnt target genes.
Figure 6: Combined effect of Tcf1 and Tcf3– β -catenin for the Wnt3a response of ESCs.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Kim, J., Chu, J., Shen, X., Wang, J. & Orkin, S. H. An extended transcriptional network for pluripotency of embryonic stem cells. Cell 132, 1049–1061 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Liang, J. et al. Nanog and Oct4 associate with unique transcriptional repression complexes in embryonic stem cells. Nat. Cell Biol. 10, 731–739 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Boyer, L. A. et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122, 947–956 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Loh, Y. H. et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat. Genet. 38, 431–440 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Nichols, J. et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95, 379–391 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Niwa, H., Miyazaki, J. & Smith, A. G. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat. Genet. 24, 372–376 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Avilion, A. A. et al. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev. 17, 126–140 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chambers, I. et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113, 643–655 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Mitsui, K. et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113, 631–642 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Marson, A. et al. Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell 134, 521–533 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cole, M. F., Johnstone, S. E., Newman, J. J., Kagey, M. H. & Young, R. A. Tcf3 is an integral component of the core regulatory circuitry of embryonic stem cells. Genes Dev. 22, 746–755 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tam, W. L. et al. T-cell factor 3 regulates embryonic stem cell pluripotency and self-renewal by the transcriptional control of multiple lineage pathways. Stem Cells 26, 2019–2031 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yi, F., Pereira, L. & Merrill, B.J. Tcf3 functions as a steady state limiter of transcriptional programs of mouse embryonic stem cell self renewal. Stem Cells 26, 1951–1960 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. MacDonald, B. T., Tamai, K. & He, X. Wnt/β-catenin signaling: components, mechanisms, and diseases. Dev. Cell 17, 9–26 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Brannon, M., Gomperts, M., Sumoy, L., Moon, R. T. & Kimelman, D. A β-catenin/XTcf-3 complex binds to the siamois promoter to regulate dorsal axis specification in Xenopus . Genes Dev. 11, 2359–2370 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Molenaar, M. et al. XTcf-3 transcription factor mediates β-catenin-induced axis formation in Xenopus embryos. Cell 86, 391–399 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. van de Wetering, M. et al. Armadillo coactivates transcription driven by the product of the Drosophila segment polarity gene dTCF. Cell 88, 789–799 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Sato, N., Meijer, L., Skaltsounis, L., Greengard, P. & Brivanlou, A.H. Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat. Med. 10, 55–63 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Doble, B. W., Patel, S., Wood, G. A., Kockeritz, L. K. & Woodgett, J. R. Functional redundancy of GSK-3α and GSK-3β in Wnt/β-catenin signaling shown by using an allelic series of embryonic stem cell lines. Dev Cell 12, 957–971 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nichols, J., Silva, J., Roode, M. & Smith, A. Suppression of Erk signalling promotes ground state pluripotency in the mouse embryo. Development 136, 3215–3222 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ying, Q. L. et al. The ground state of embryonic stem cell self-renewal. Nature 453, 519–523 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kelly, K. F. et al. β-catenin enhances Oct-4 activity and reinforces pluripotency through a TCF-independent mechanism. Cell Stem Cell 8, 214–227 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pereira, L., Yi, F. & Merrill, B. J. Repression of nanog gene transcription by tcf3 limits embryonic stem cell self-renewal. Mol. Cell Biol. 26, 7479–7491 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nishiyama, A. et al. Uncovering early response of gene regulatory networks in ESCs by systematic induction of transcription factors. Cell Stem Cell 5, 420–433 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Raychaudhuri, S., Stuart, J. M. & Altman, R. B. Principal components analysis to summarize microarray experiments: application to sporulation time series. Pac. Symp. Biocomput. 2000, 455–466 (2000).

    Google Scholar 

  26. Arce, L., Yokoyama, N. N. & Waterman, M. L. Diversity of LEF/TCF action in development and disease. Oncogene 25, 7492–7504 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. van de Wetering, M., Oosterwegel, M., Dooijes, D. & Clevers, H. Identification and cloning of TCF-1, a T lymphocyte-specific transcription factor containing a sequence-specific HMG box. EMBO J. 10, 123–132 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Galceran, J., Farinas, I., Depew, M. J., Clevers, H. & Grosschedl, R. Wnt3a-/- like phenotype and limb deficiency in Lef1(-/-)Tcf1(-/-) mice. Genes Dev. 13, 709–717 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gregorieff, A., Grosschedl, R. & Clevers, H. Hindgut defects and transformation of the gastro-intestinal tract in Tcf4(-/-)/Tcf1(-/-) embryos. EMBO J. 23, 1825–1833 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nguyen, H. et al. Tcf3 and Tcf4 are essential for long-term homeostasis of skin epithelia. Nat. Genet. 41, 1068–1075 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Biechele, T. L., Adams, A. M. & Moon, R. T. Transcription-based reporters of Wnt/β-catenin signaling. Cold Spring Harb. Protoc.doi:10.1101/pdb.prot5223 (2009).

  32. Jho, E. H. et al. Wnt/β-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol. Cell Biol. 22, 1172–1183 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Abu-Remaileh, M. et al. Oct-3/4 regulates stem cell identity and cell fate decisions by modulating Wnt/β-catenin signalling. EMBO J. 29, 3236–3248 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Takao, Y., Yokota, T. & Koide, H. β-catenin up-regulates Nanog expression through interaction with Oct-3/4 in embryonic stem cells. Biochem. Biophys. Res. Commun. 353, 699–705 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Wang, J. et al. A protein interaction network for pluripotency of embryonic stem cells. Nature 444, 364–368 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank K. Plath for helpful discussions and thoughtful comments on the manuscript, and M. Ko and A. Nishiyama for the inducible Tcf3 overexpression cell line. The work was financially supported by grants from the American Cancer Society (RSG GGC 112994, B.J.M.), the National Institutes of Health (R01-CA128571, B.J.M. and R01-GM065400, D.R.L.) and the Howard Hughes Medical Institute (D.R.L.).

Author information

Authors and Affiliations

Authors

Contributions

All authors designed and analysed experiments. F.Y., L.P., J.A.H., B.R.S. and C.M.Y. carried out experiments. F.Y., L.P. and B.J.M. wrote the manuscript. B.J.M. and D.R.L. supervised the project.

Corresponding author

Correspondence to Bradley J. Merrill.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 868 kb)

Supplementary Information

Supplementary Table 1 (XLSX 161 kb)

Supplementary Information

Supplementary Table 2 (XLSX 139 kb)

Supplementary Information

Supplementary Table 3 (XLSX 59 kb)

Supplementary Information

Supplementary Table 4 (XLSX 10 kb)

Supplementary Information

Supplementary Table 5 (XLSX 12 kb)

Supplementary Information

Supplementary Table 6 (XLSX 10 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yi, F., Pereira, L., Hoffman, J. et al. Opposing effects of Tcf3 and Tcf1 control Wnt stimulation of embryonic stem cell self-renewal. Nat Cell Biol 13, 762–770 (2011). https://doi.org/10.1038/ncb2283

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2283

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing