Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cleavage of cohesin rings coordinates the separation of centrioles and chromatids

Abstract

Cohesin pairs sister chromatids by forming a tripartite Scc1–Smc1–Smc3 ring around them1,2. In mitosis, cohesin is removed from chromosome arms by the phosphorylation- dependent prophase pathway3. Centromeric cohesin is protected by shugoshin 1 and protein phosphatase 2A (Sgo1–PP2A) and opened only in anaphase by separase-dependent cleavage of Scc1 (refs 4, 5, 6). Following chromosome segregation, centrioles loosen their tight orthogonal arrangement, which licenses later centrosome duplication in S phase7. Although a role of separase in centriole disengagement has been reported, the molecular details of this process remain enigmatic8,9. Here, we identify cohesin as a centriole-engagement factor. Both premature sister-chromatid separation and centriole disengagement are induced by ectopic activation of separase or depletion of Sgo1. These unscheduled events are suppressed by expression of non-cleavable Scc1 or inhibition of the prophase pathway. When endogenous Scc1 is replaced by artificially cleavable Scc1, the corresponding site-specific protease triggers centriole disengagement. Separation of centrioles can alternatively be induced by ectopic cleavage of an engineered Smc3. Thus, the chromosome and centrosome cycles exhibit extensive parallels and are coordinated with each other by dual use of the cohesin ring complex.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Centriole disengagement is promoted by separase and inhibited by non-cleavable Scc1.
Figure 2: Cleavage of an engineered Scc1 triggers centriole disengagement in vitro.
Figure 3: Cleavage of HRV-Scc1 triggers centriole disengagement in vivo.
Figure 4: Ectopic opening of the cohesin ring within Smc3 triggers centriole disengagement.
Figure 5: The prophase pathway promotes centriole disengagement.

Similar content being viewed by others

References

  1. Gruber, S., Haering, C. H. & Nasmyth, K. Chromosomal cohesin forms a ring. Cell 112, 765–777 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Haering, C. H., Farcas, A. M., Arumugam, P., Metson, J. & Nasmyth, K. The cohesin ring concatenates sister DNA molecules. Nature 454, 297–301 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Hauf, S. et al. Dissociation of cohesin from chromosome arms and loss of arm cohesion during early mitosis depends on phosphorylation of SA2. PLoS Biol. 3, e69 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kitajima, T. S. et al. Shugoshin collaborates with protein phosphatase 2A to protect cohesin. Nature 441, 46–52 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Riedel, C. G. et al. Protein phosphatase 2A protects centromeric sister chromatid cohesion during meiosis I. Nature 441, 53–61 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Uhlmann, F., Wernic, D., Poupart, M. A., Koonin, E. V. & Nasmyth, K. Cleavage of cohesin by the CD clan protease separin triggers anaphase in yeast. Cell 103, 375–386 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Wong, C. & Stearns, T. Centrosome number is controlled by a centrosome-intrinsic block to reduplication. Nat. Cell Biol. 5, 539–544 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Tsou, M. F. & Stearns, T. Mechanism limiting centrosome duplication to once per cell cycle. Nature 442, 947–951 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Tsou, M. F. et al. Polo kinase and separase regulate the mitotic licensing of centriole duplication in human cells. Dev. Cell 17, 344–354 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ganem, N. J., Godinho, S. A. & Pellman, D. A mechanism linking extra centrosomes to chromosomal instability. Nature 460, 278–282 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stemmann, O., Zou, H., Gerber, S. A., Gygi, S. P. & Kirschner, M. W. Dual inhibition of sister chromatid separation at metaphase. Cell 107, 715–726 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Zou, H., McGarry, T. J., Bernal, T. & Kirschner, M. W. Identification of a vertebrate sister-chromatid separation inhibitor involved in transformation and tumorigenesis. Science 285, 418–422 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Gorr, I. H., Boos, D. & Stemmann, O. Mutual inhibition of separase and Cdk1 by two-step complex formation. Mol. Cell 19, 135–141 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Beauchene, N. A. et al. Rad21 is required for centrosome integrity in human cells independently of its role in chromosome cohesion. Cell Cycle 9, 1774–1780 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Gregson, H. C. et al. A potential role for human cohesin in mitotic spindle aster assembly. J. Biol. Chem. 276, 47575–47582 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Guan, J., Ekwurtzel, E., Kvist, U. & Yuan, L. Cohesin protein SMC1 is a centrosomal protein. Biochem. Biophys. Res. Commun. 372, 761–764 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Kong, X. et al. Cohesin associates with spindle poles in a mitosis-specific manner and functions in spindle assembly in vertebrate cells. Mol. Biol. Cell 20, 1289–1301 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nakamura, A., Arai, H. & Fujita, N. Centrosomal Aki1 and cohesin function in separase-regulated centriole disengagement. J. Cell Biol. 187, 607–614 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wong, R. W. & Blobel, G. Cohesin subunit SMC1 associates with mitotic microtubules at the spindle pole. Proc. Natl Acad. Sci. USA 105, 15441–15445 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Losada, A., Yokochi, T. & Hirano, T. Functional contribution of Pds5 to cohesin-mediated cohesion in human cells and Xenopus egg extracts. J. Cell Sci. 118, 2133–2141 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Boos, D., Kuffer, C., Lenobel, R., Korner, R. & Stemmann, O. Phosphorylation-dependent binding of cyclin B1 to a Cdc6-like domain of human separase. J. Biol. Chem. 283, 816–823 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Holland, A. J. & Taylor, S. S. Cyclin-B1-mediated inhibition of excess separase is required for timely chromosome disjunction. J. Cell Sci. 119, 3325–3336 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Thein, K. H., Kleylein-Sohn, J., Nigg, E. A. & Gruneberg, U. Astrin is required for the maintenance of sister chromatid cohesion and centrosome integrity. J. Cell Biol. 178, 345–354 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cordingley, M. G., Callahan, P. L., Sardana, V. V., Garsky, V. M. & Colonno, R. J. Substrate requirements of human rhinovirus 3C protease for peptide cleavage in vitro . J. Biol. Chem 265, 9062–9065 (1990).

    CAS  PubMed  Google Scholar 

  25. Bornkamm, G. W. et al. Stringent doxycycline-dependent control ofgene activities using an episomal one-vector system. Nucleic Acids Res. 33, e137 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Faragher, A. J. & Fry, A. M. Nek2A kinase stimulates centrosome disjunction and is required for formation of bipolar mitotic spindles. Mol. Biol. Cell 14, 2876–2889 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Loncarek, J., Hergert, P. & Khodjakov, A. Centriole reduplication during prolonged interphase requires procentriole maturation governed by Plk1. Curr. Biol. 20, 1277–1282 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lenart, P. et al. The small-molecule inhibitor BI 2536 reveals novel insights into mitotic roles of polo-like kinase 1. Curr. Biol. 17, 304–315 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Sumara, I. et al. The dissociation of cohesin from chromosomes in prophase is regulated by Polo-like kinase. Mol. Cell 9, 515–525 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Gandhi, R., Gillespie, P. J. & Hirano, T. Human Wapl is a cohesin-binding protein that promotes sister-chromatid resolution in mitotic prophase. Curr. Biol. 16, 2406–2417 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kueng, S. et al. Wapl controls the dynamic association of cohesin with chromatin. Cell 127, 955–967 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Gimenez-Abian, J.F. et al. Regulation of sister chromatid cohesion between chromosome arms. Curr. Biol. 14, 1187–1193 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Salic, A., Waters, J. C. & Mitchison, T. J. Vertebrate shugoshin links sister centromere cohesion and kinetochore microtubule stability in mitosis. Cell 118, 567–578 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Tang, Z., Sun, Y., Harley, S.E., Zou, H. & Yu, H. Human Bub1 protects centromeric sister-chromatid cohesion through Shugoshin during mitosis. Proc. Natl Acad. Sci. USA 101, 18012–18017 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. McGuinness, B. E., Hirota, T., Kudo, N. R., Peters, J. M. & Nasmyth, K. Shugoshin prevents dissociation of cohesin from centromeres during mitosis in vertebrate cells. PLoS Biol 3, e86 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wang, X. et al. sSgo1, a major splice variant of Sgo1, functions in centriole cohesion where it is regulated by Plk1. Dev. Cell 14, 331–341 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Uhlmann, F. & Nasmyth, K. Cohesion between sister chromatids must be established during DNA replication. Curr. Biol. 8, 1095–1101 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Elbashir, S. M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Kumagai, A. & Dunphy, W. G. The cdc25 protein controls tyrosine dephosphorylation of the cdc2 protein in a cell-free system. Cell 64, 903–914 (1991).

    Article  CAS  PubMed  Google Scholar 

  40. Bornens, M. & Moudjou, M. Studying the composition and function of centrosomes in vertebrates. Methods Cell Biol. 61, 13–34 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Hermann, L. Mohr, A. Rehn and B. Sünkel for technical assistance, H. Bujard for pRTS1, D. van Essen, S. Saccani and S. Heidmann for anti-GFP, E. A. Nigg for anti-C-NAP1 and J. L. Salisbury for anti-centrin, K. Mayer for introducing us to the centrosome isolation procedure and S. Geimer, S. Heidmann and members of the Stemmann lab for discussions. This work was supported by grants of the Deutsche Forschungsgemeinschaft (grant SPP1384) and Deutsche Krebshilfe to O.S.

Author information

Authors and Affiliations

Authors

Contributions

L.S. carried out all experiments, M.M. created the episomal cell lines, helped with cloning of TEV-Smc3 and independently reproduced many experiments, B.M. produced Plk1, designed the experiment shown in Fig. 3b and independently confirmed several experiments, D.B. started the project and O.S. designed the research and wrote the paper.

Corresponding author

Correspondence to Olaf Stemmann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 473 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schöckel, L., Möckel, M., Mayer, B. et al. Cleavage of cohesin rings coordinates the separation of centrioles and chromatids. Nat Cell Biol 13, 966–972 (2011). https://doi.org/10.1038/ncb2280

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2280

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing