Intracellular transport occurs through two general types of carrier, either vesicles1,2 or tubules3,4. Coat proteins act as the core machinery that initiates vesicle formation1,2, but the counterpart that initiates tubule formation has been unclear. Here, we find that the coat protein I (COPI) complex initially drives the formation of Golgi buds. Subsequently, a set of opposing lipid enzymatic activities determines whether these buds become vesicles or tubules. Lysophosphatidic acid acyltransferase-γ (LPAATγ) promotes COPI vesicle fission for retrograde vesicular transport. In contrast, cytosolic phospholipase A2-α (cPLA2α) inhibits this fission event to induce COPI tubules, which act in anterograde intra-Golgi transport and Golgi ribbon formation. These findings not only advance a molecular understanding of how COPI vesicle fission is achieved, but also provide insight into how COPI acts in intra-Golgi transport and reveal an unexpected mechanistic relationship between vesicular and tubular transport.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1.

    , & Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle. Dev. Cell 12, 671–682 (2007).

  2. 2.

    & Conserved functions of membrane active GTPases in coated vesicle formation. Science 325, 1217–1220 (2009).

  3. 3.

    & The formation of TGN-to-plasma-membrane transport carriers. Annu. Rev. Cell Dev. Biol. 22, 439–455 (2006).

  4. 4.

    & Exiting the Golgi complex. Nat. Rev. Mol. Cell Biol. 9, 273–284 (2008).

  5. 5.

    , & The evolving understanding of COPI vesicle formation. Nat. Rev. Mol. Cell Biol. 10, 360–364 (2009).

  6. 6.

    , & ‘Coatomer’: a cytosolic protein complex containing subunits of non-clathrin-coated Golgi transport vesicles. Nature 349, 248–251 (1991).

  7. 7.

    , , & ADP-ribosylation factor, a small GTP-binding protein, is required for binding of the coatomer protein β-COP to Golgi membranes. Proc. Natl Acad. Sci. USA 89, 6408–6412 (1992).

  8. 8.

    , , & The ARF1-GTPase-activating protein: zinc finger motif and Golgi complex localization. Science 270, 1999–2002 (1995).

  9. 9.

    et al. ARFGAP1 promotes the formation of COPI vesicles, suggesting function as a component of the coat. J. Cell Biol. 159, 69–78 (2002).

  10. 10.

    , , , & ARFGAP1 plays a central role in coupling COPI cargo sorting with vesicle formation. J. Cell Biol. 168, 281–290 (2005).

  11. 11.

    et al. A role for BARS at the fission step of COPI vesicle formation from Golgi membrane. EMBO J. 24, 4133–4143 (2005).

  12. 12.

    et al. CtBP/BARS induces fission of Golgi membranes by acylating lysophosphatidic acid. Nature 402, 429–433 (1999).

  13. 13.

    , & Endophilin and CtBP/BARS are not acyl transferases in endocytosis or Golgi fission. Nature 438, 675–678 (2005).

  14. 14.

    et al. A role for phosphatidic acid in COPI vesicle fission yields insights into Golgi maintenance. Nat. Cell Biol. 10, 1146–1153 (2008).

  15. 15.

    , & A unique lysophospholipid acyltransferase (LPAT) antagonist, CI-976, affects secretory and endocytic membrane trafficking pathways. J. Cell Sci. 118, 3061–3071 (2005).

  16. 16.

    & Acyl-CoA:lysophospholipid acyltransferases. J. Biol. Chem. 284, 1–5 (2009).

  17. 17.

    & Lysophosphatidic acid acyltransferase 3 regulates Golgi complex structure and function. J. Cell Biol. 186, 211–218 (2009).

  18. 18.

    et al. Key components of the fission machinery are interchangeable. Nat. Cell Biol. 8, 1376–1382 (2006).

  19. 19.

    & The phospholipase A2 superfamily and its group numbering system. Biochim. Biophys. Acta 1761, 1246–1259 (2006).

  20. 20.

    , , & Intracellular calcium signals regulating cytosolic phospholipase A2 translocation to internal membranes. J. Biol. Chem. 276, 30150–30160 (2001).

  21. 21.

    et al. Early stages of Golgi vesicle and tubule formation require diacylglycerol. Mol. Biol. Cell 20, 780–790 (2009).

  22. 22.

    et al. Group IV phospholipase A(2)α controls the formation of inter-cisternal continuities involved in intra-golgi transport. PLoS Biol. 7, e1000194 (2009).

  23. 23.

    , & Disruptions in Golgi structure and membrane traffic in a conditional lethal mammalian cell mutant are corrected by ε-COP. J. Cell Biol. 125, 1213–1224 (1994).

  24. 24.

    et al. The phospholipase D1 pathway modulates macroautophagy. Nat. Commun. 1, 142 (2010).

  25. 25.

    et al. Phospholipase d2 ablation ameliorates Alzheimer’s disease-linked synaptic dysfunction and cognitive deficits. J. Neurosci. 30, 16419–16428 (2010).

  26. 26.

    et al. Design and synthesis of isoform-selective phospholipase D (PLD) inhibitors. Part II. Identification of the 1,3,8-triazaspiro[4,5]decan-4-one privileged structure that engenders PLD2 selectivity. Bioorg. Med. Chem. Lett. 19, 2240–2243 (2009).

  27. 27.

    et al. Design and synthesis of isoform-selective phospholipase D (PLD) inhibitors. Part I: impact of alternative halogenated privileged structures for PLD1 specificity. Bioorg. Med. Chem. Lett. 19, 1916–1920 (2009).

  28. 28.

    et al. Journeys through the Golgi–taking stock in a new era. J. Cell Biol. 187, 449–453 (2009).

  29. 29.

    & Membrane traffic within the Golgi apparatus. Annu. Rev. Cell Dev. Biol. 25, 113–132 (2009).

  30. 30.

    et al. Identification of phosphorylation sites of human 85-kDa cytosolic phospholipase A2 expressed in insect cells and present in human monocytes. J. Biol. Chem. 271, 6987–6997 (1996).

  31. 31.

    , , & Characterization of mouse lysophosphatidic acid acyltransferase 3: an enzyme with dual functions in the testis. J. Lipid Res. 50, 860–869 (2009).

  32. 32.

    , , , & Binding of coatomer to Golgi membranes requires ADP-ribosylation factor. J. Biol. Chem. 268, 12083–12089 (1993).

  33. 33.

    et al. Golgi enzymes are enriched in perforated zones of golgi cisternae but are depleted in COPI vesicles. Mol. Biol. Cell 15, 4710–4724 (2004).

  34. 34.

    et al. CtBP3/BARS drives membrane fission in dynamin-independent transport pathways. Nat. Cell Biol. 7, 570–580 (2005).

  35. 35.

    et al. Mycobacterial Esx-3 is required for mycobactin-mediated iron acquisition. Proc. Natl Acad. Sci. USA 106, 18792–18797 (2009).

  36. 36.

    , , & Improved method for the quantification of lysophospholipids including enol ether species by liquid chromatography–tandem mass spectrometry. J. Lipid Res. 51, 440–447 (2010).

Download references


We thank J. Li and M. Bai for advice and discussions, G. Di Tullio and M. Santoro for generating the anti-LPAATγ antibody, and R. Loper for technical assistance. This work is financially supported by grants from the National Institutes of Health to V.W.H. (GM058615), D.B.M. (AI071155 and AR048632), C.C.L. (HL061378), M.H.G. (HL050040) and W.J.B. (GM051596), and also by grants from Telethon to A.L. (GGPO823) and R.S.P. (GTF08001), from AIRC to A.L. (IG4700), D.C. (IG4664) and R.P. (IG10233), and from European Grant Eucilia to A.L. (HEALT-F2-2007-201804). C.V. is a recipient of an Italian Foundation for Cancer Research Fellowship. D.B.M. is supported by the Burroughs Wellcome Fund Program in Translational Medicine.

Author information


  1. Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA

    • Jia-Shu Yang
    • , Emilie Layre
    • , D. Branch Moody
    •  & Victor W. Hsu
  2. Telethon Institute of Genetics and Medicine, Via Pietro Castellino 111, 80131 Napoli, Italy

    • Carmen Valente
    • , Roman S. Polishchuk
    •  & Alberto Luini
  3. Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131 Napoli, Italy

    • Carmen Valente
    • , Gabriele Turacchio
    • , Daniela Corda
    •  & Alberto Luini
  4. Department of Pediatrics, National Jewish Health, and Departments of Pathology and Pharmacology, University of Colorado School of Medicine, Denver, Colorado 80262, USA

    • Christina C. Leslie
  5. Department of Chemistry and Biochemistry, University of Washington, Seattle, Washington 98195, USA

    • Michael H. Gelb
  6. Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA

    • William J. Brown


  1. Search for Jia-Shu Yang in:

  2. Search for Carmen Valente in:

  3. Search for Roman S. Polishchuk in:

  4. Search for Gabriele Turacchio in:

  5. Search for Emilie Layre in:

  6. Search for D. Branch Moody in:

  7. Search for Christina C. Leslie in:

  8. Search for Michael H. Gelb in:

  9. Search for William J. Brown in:

  10. Search for Daniela Corda in:

  11. Search for Alberto Luini in:

  12. Search for Victor W. Hsu in:


J-S.Y., C.V., R.S.P., G.T., E.L., C.C.L., M.H.G. and W.J.B participated in experimental work and data analysis. V.W.H., A.L., D.B.M. and D.C. participated in project planning and data analysis. V.W.H., A.L. and J-S.Y. wrote the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Alberto Luini or Victor W. Hsu.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Information

About this article

Publication history






Further reading