Article | Published:

External forces control mitotic spindle positioning

Nature Cell Biology volume 13, pages 771778 (2011) | Download Citation

Abstract

The response of cells to forces is essential for tissue morphogenesis and homeostasis. This response has been extensively investigated in interphase cells, but it remains unclear how forces affect dividing cells. We used a combination of micro-manipulation tools on human dividing cells to address the role of physical parameters of the micro-environment in controlling the cell division axis, a key element of tissue morphogenesis. We found that forces applied on the cell body direct spindle orientation during mitosis. We further show that external constraints induce a polarization of dynamic subcortical actin structures that correlate with spindle movements. We propose that cells divide according to cues provided by their mechanical micro-environment, aligning daughter cells with the external force field.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Mechanisms of asymmetric cell division: flies and worms pave the way. Nat. Rev. Mol. Cell Biol. 9, 355–366 (2008).

  2. 2.

    Control of cell polarity and mitotic spindle positioning in animal cells. Curr. Opin. Cell Biol. 15, 73–81 (2003).

  3. 3.

    & Asymmetric cell divisions promote stratification and differentiation of mammalian skin. Nature 437, 275–280 (2005).

  4. 4.

    , , & Adherens junctions inhibit asymmetric division in the Drosophila epithelium. Nature 409, 522–525 (2001).

  5. 5.

    , & Integrin signaling regulates spindle orientation in Drosophila to preserve the follicular-epithelium monolayer. Curr. Biol. 17, 683–688 (2007).

  6. 6.

    & Integrin-mediated adhesion orients the spindle parallel to the substratum in an EB1- and myosin X-dependent manner. EMBO J. 26, 1487–1498 (2007).

  7. 7.

    et al. The extracellular matrix guides the orientation of the cell division axis. Nat. Cell Biol. 7, 947–953 (2005).

  8. 8.

    & Local force and geometry sensing regulate cell functions. Nat. Rev. Mol. Cell Biol. 7, 265–275 (2006).

  9. 9.

    et al. Physical mechanisms redirecting cell polarity and cell shape in fission yeast. Curr. Biol. 18, 1748–1753 (2008).

  10. 10.

    , , , & The influence of cell mechanics, cell–cell interactions, and proliferation on epithelial packing. Curr. Biol. 17, 2095–2104 (2007).

  11. 11.

    , , & Nature and anisotropy of cortical forces orienting Drosophila tissue morphogenesis. Nat. Cell Biol. 10, 1401–1410 (2008).

  12. 12.

    & Mechanotransduction in development: a growing role for contractility. Nat. Rev. Mol. Cell Biol. 10, 34–43 (2009).

  13. 13.

    , , , & Experimental and theoretical study of mitotic spindle orientation. Nature 447, 493–496 (2007).

  14. 14.

    & Myosin is involved in postmitotic cell spreading. J. Cell Biol. 131, 179–189 (1995).

  15. 15.

    , , , & Simple and rapid process for single cell micro-patterning. Lab. on a chip 9, 1640–1642 (2009).

  16. 16.

    & Traction forces of cytokinesis measured with optically modified elastic substrata. Nature 385, 450–454 (1997).

  17. 17.

    et al. The optical stretcher: a novel laser tool to micromanipulate cells. Biophys. J. 81, 767–784 (2001).

  18. 18.

    et al. Calyculin-A increases the level of protein phosphorylation and changes the shape of 3T3 fibroblasts. Cell Motil. Cytoskeleton 18, 26–40 (1991).

  19. 19.

    et al. Hydrostatic pressure and the actomyosin cortex drive mitotic cell rounding. Nature 469, 226–230 (2011).

  20. 20.

    , , & Two characteristic regimes in frequency-dependent dynamic reorientation of fibroblasts on cyclically stretched substrates. Biophys. J. 95, 3470–3478 (2008).

  21. 21.

    & Mammalian spindle orientation and position respond to changes in cell shape in a dynein-dependent fashion. Mol. Biol. Cell 11, 1765–1774 (2000).

  22. 22.

    et al. Mitosis-specific mechanosensing and contractile-protein redistribution control cell shape. Curr. Biol. 16, 1962–1967 (2006).

  23. 23.

    et al. Lifeact: a versatile marker to visualize F-actin. Nat. Methods 5, 605–607 (2008).

  24. 24.

    , & Versatile fluorescent probes for actin filaments based on the actin-binding domain of utrophin. Cell Motil. Cytoskeleton 64, 822–832 (2007).

  25. 25.

    et al. Revolving movement of a dynamic cluster of actin filaments during mitosis. J. Cell Biol. 191, 453–462 (2010).

  26. 26.

    & Analysis of the role of astral rays in pronuclear migration in sand dollar eggs by the colcemid-UV method. Dev. Growth Differ. 28, 143–156 (1986).

  27. 27.

    , & Influence of cell geometry on division-plane positioning. Cell 144, 414–426 (2011).

  28. 28.

    , , , & A model for cleavage plane determination in early amphibian and fish embryos. Curr. Biol. 20, 2040–2045 (2010).

  29. 29.

    et al. Spindle positioning in mouse oocytes relies on a dynamic meshwork of actin filaments. Curr. Biol. 18, 1514–1519 (2008).

  30. 30.

    & A new model for asymmetric spindle positioning in mouse oocytes. Curr. Biol. 18, 1986–1992 (2008).

  31. 31.

    , , & Myosin-10 and actin filaments are essential for mitotic spindle function. J. Cell Biol. 182, 77–88 (2008).

  32. 32.

    , , , & Mechanical force mobilizes zyxin from focal adhesions to actin filaments and regulates cytoskeletal reinforcement. J. Cell Biol. 171, 209–215 (2005).

  33. 33.

    et al. Ric-8A and Gi alpha recruit LGN, NuMA, and dynein to the cell cortex to help orient the mitotic spindle. Mol. Cell Biol. 30, 3519–3530 (2010).

  34. 34.

    et al. Developmental patterning by mechanical signals in Arabidopsis. Science 322, 1650–1655 (2008).

  35. 35.

    et al. Fluidization of tissues by cell division and apoptosis. Proc. Natl Acad. Sci. USA 107, 20863–20868 (2010).

  36. 36.

    , , , & Protein micropatterns: a direct printing protocol using deep UVs. Methods Cell Biol. 97, 133–146 (2010).

  37. 37.

    & Calibration of optical tweezers with positional detection in the back focal plane. Rev. Sci. Instrum. 77, 103101–103111 (2006).

  38. 38.

    , & Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc. Natl Acad. Sci. USA 94, 849–854 (1997).

  39. 39.

    Ueber den Werth der ersten Furchungszellen für die Organbildung des Embryo. Experimentelle Studien am Frosch-und Tritonei. Arch. Mikrosk. Anat. 42, 662–807 (1893).

  40. 40.

    et al. Patch-based nonlocal functional for denoising fluorescence microscopy image sequences. IEEE Trans. Med. Imaging 29, 442–454 (2010).

Download references

Acknowledgements

We are grateful to J. Colombelli for helpful discussions and preliminary experiments on retraction fibre cutting; L. Mahadevan for helpful discussions concerning mechanical cortex anisotropy; D. Gerlich (ETH, Zurich, Switzerland) and R. Tsien (UCSD, San Diego, USA) for the pIRES-puro3–MyrPalm–GFP plasmid; V. Doye (IJM, Paris, France) for the pIRES-neo–histone2B–mCherry plasmid; W. Bement (University of Wisconsin, Madison, USA) for the GFP–Utr-CH plasmid; R. Wedlich-Soldner (IMPRS, Martinsried, Germany) and G. Montagnac (Institut Curie, Paris, France) for the Lifeact–mCherry plasmid; M. Heuze (Institut Curie, Paris, France) and A. M. Lennon-Dumesnil (Institut Curie, Paris, France) for the Lifeact–mCherry lentivirus; V. Fraisier, the Nikon Imaging Center and the PICT–IBiSA of the Institut Curie for technical support in microscopy; J. Boulanger for image treatment using ndsafir; and Z. Maciarowski, C. Guérin and A. Viguier for FACS sorting of stable cell lines. We thank M. Thery and J. Aubertin for helpful discussions throughout the course of this work and A. W. Murray, E. Paluch, A. M. Lennon-Dumesnil, A. Taddei, M. Thery, S. Misery-Lenkei and members of the Piel laboratory for critical reading of the manuscript. This work was supported by the Centre National de la Recherche Scientifique, the Institut Curie and by ANR (ANR-06-PCVI-0010) and HFSP grants to M.P. J.F. was supported by pre-doctoral fellowships from Boehringer Ingelheim Fonds and the Association pour la Recherche sur le Cancer.

Author information

Affiliations

  1. Institut Curie, CNRS UMR 144, 26 rue d’Ulm, 75248 Paris Cedex 05, France

    • Jenny Fink
    • , Nicolas Carpi
    • , Meriem Chebah
    • , Ammar Azioune
    • , Michel Bornens
    •  & Matthieu Piel
  2. Institut Curie, CNRS UMR 168, 26 rue d’Ulm, 75248 Paris Cedex 05, France

    • Timo Betz
    • , Angelique Bétard
    • , Cecile Sykes
    • , Luc Fetler
    •  & Damien Cuvelier

Authors

  1. Search for Jenny Fink in:

  2. Search for Nicolas Carpi in:

  3. Search for Timo Betz in:

  4. Search for Angelique Bétard in:

  5. Search for Meriem Chebah in:

  6. Search for Ammar Azioune in:

  7. Search for Michel Bornens in:

  8. Search for Cecile Sykes in:

  9. Search for Luc Fetler in:

  10. Search for Damien Cuvelier in:

  11. Search for Matthieu Piel in:

Contributions

J.F. designed, carried out and analysed most experiments and wrote the article, N.C. carried out most cell stretching experiments as well as experiments shown in Fig. 2f and Supplementary Fig. S3, T.B. carried out and analysed optical trap experiments (Fig. 2c–e), A.B. carried out some cell stretching experiments, M.C. carried out the experiments shown in Fig. 2f and Supplementary Fig. S3, A.A. developed the method to produce micropatterns on stretchable substrates, M.B. contributed ideas, discussion and supervised part of the work of J.F., C.S. contributed ideas and discussion and supervised the work on optical trap experiments, L.F. carried out laser ablation experiments (Fig. 1), D.C. set up the cell stretching device, supervised the work of A.B. and contributed ideas and discussion, and M.P. supervised the work, carried out experiments and wrote the paper.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Matthieu Piel.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Information

Videos

  1. 1.

    Supplementary Information

    Supplementary Movie 1

  2. 2.

    Supplementary Information

    Supplementary Movie 2

  3. 3.

    Supplementary Information

    Supplementary Movie 3

  4. 4.

    Supplementary Information

    Supplementary Movie 4

  5. 5.

    Supplementary Information

    Supplementary Movie 5

  6. 6.

    Supplementary Information

    Supplementary Movie 6

  7. 7.

    Supplementary Information

    Supplementary Movie 7

  8. 8.

    Supplementary Information

    Supplementary Movie 8

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/ncb2269

Further reading