Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The PIAS homologue Siz2 regulates perinuclear telomere position and telomerase activity in budding yeast

Abstract

Budding yeast telomeres are reversibly bound at the nuclear envelope through two partially redundant pathways that involve the Sir2/3/4 silencing complex and the Yku70/80 heterodimer1,2. To better understand how this is regulated, we studied the role of SUMOylation in telomere anchoring. We find that the PIAS-like SUMO E3 ligase Siz2 sumoylates both Yku70/80 and Sir4 in vivo and promotes telomere anchoring to the nuclear envelope. Remarkably, loss of Siz2 also provokes telomere extension in a telomerase-dependent manner that is epistatic with loss of the helicase Pif1. Consistent with our previously documented role for telomerase in anchorage3, normal telomere anchoring in siz2 Δ is restored by PIF1 deletion. By live-cell imaging of a critically short telomere, we show that telomeres shift away from the nuclear envelope when elongating. We propose that SUMO-dependent association with the nuclear periphery restrains bound telomerase, whereas active elongation correlates with telomere release.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Yeast telomeres are delocalized by deletion of SIZ2.
Figure 2: Siz2-dependent SUMOylation of Sir4 and Yku70/80 promotes chromatin anchoring.
Figure 3: SUMO modification of Yku70 and Yku80 enhances telomere anchoring.
Figure 4: Pif1 links Siz2-dependent telomere length and localization regulation.
Figure 5: Critically short telomeres detach from the periphery on elongation during the first S phase.

Similar content being viewed by others

References

  1. Hediger, F., Neumann, F. R., Van Houwe, G., Dubrana, K. & Gasser, S. M. Live imaging of telomeres: yKu and Sir proteins define redundant telomere-anchoring pathways in yeast. Curr. Biol. 12, 2076–2089 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Palladino, F. et al. SIR3 and SIR4 proteins are required for the positioning and integrity of yeast telomeres. Cell 75, 543–555 (1993).

    Article  CAS  PubMed  Google Scholar 

  3. Schober, H., Ferreira, H., Kalck, V., Gehlen, L. R. & Gasser, S. M. Yeast telomerase and the SUN domain protein Mps3 anchor telomeres and repress subtelomeric recombination. Genes Dev. 23, 928–938 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bupp, J. M., Martin, A. E., Stensrud, E. S. & Jaspersen, S. L. Telomere anchoring at the nuclear periphery requires the budding yeast Sad1-UNC-84 domain protein Mps3. J. Cell Biol. 179, 845–854 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Taddei, A., Hediger, F., Neumann, F. R., Bauer, C. & Gasser, S. M. Separation of silencing from perinuclear anchoring functions in yeast Ku80, Sir4 and Esc1 proteins. EMBO J. 23, 1301–1312 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhao, X., Wu, C. Y. & Blobel, G. Mlp-dependent anchorage and stabilization of a desumoylating enzyme is required to prevent clonal lethality. J. Cell Biol. 167, 605–611 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nathan, D. et al. Histone sumoylation is a negative regulator in Saccharomyces cerevisiae and shows dynamic interplay with positive-acting histone modifications. Genes Dev. 20, 966–976 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Seufert, W., Futcher, B. & Jentsch, S. Role of a ubiquitin-conjugating enzyme in degradation of S- and M-phase cyclins. Nature 373, 78–81 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Gartenberg, M. R., Neumann, F. R., Laroche, T., Blaszczyk, M. & Gasser, S. M. Sir-mediated repression can occur independently of chromosomal and subnuclear contexts. Cell 119, 955–967 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Mondoux, M. A., Scaife, J. G. & Zakian, V. A. Differential nuclear localization does not determine the silencing status of Saccharomyces cerevisiae telomeres. Genetics 177, 2019–2029 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Taddei, A. & Gasser, S. M. Multiple pathways for telomere tethering: functional implications of subnuclear position for heterochromatin formation. Biochim. Biophys. Acta 1677, 120–128 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Andrulis, E. D. et al. Esc1, a nuclear periphery protein required for Sir4-based plasmid anchoring and partitioning. Mol. Cell. Biol. 22, 8292–8301 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ansari, A. & Gartenberg, M. R. The yeast silent information regulator Sir4p anchors and partitions plasmids. Mol. Cell. Biol. 17, 7061–7068 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Denison, C. et al. A proteomic strategy for gaining insights into protein sumoylation in yeast. Mol. Cell. Proteomics 4, 246–254 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Hannich, J. T. et al. Defining the SUMO-modified proteome by multiple approaches in Saccharomyces cerevisiae. J. Biol. Chem. 280, 4102–4110 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Wohlschlegel, J. A., Johnson, E. S., Reed, S. I. & Yates, J. R. III Global analysis of protein sumoylation in Saccharomyces cerevisiae. J. Biol. Chem. 279, 45662–45668 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Roy, R., Meier, B., McAinsh, A. D., Feldmann, H. M. & Jackson, S. P. Separation-of-function mutants of yeast Ku80 reveal a Yku80p–Sir4p interaction involved in telomeric silencing. J. Biol. Chem. 279, 86–94 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Zhao, X. & Blobel, G. A SUMO ligase is part of a nuclear multiprotein complex that affects DNA repair and chromosomal organization. Proc. Natl Acad. Sci. USA 102, 4777–4782 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Carter, S. & Vousden, K. H. p53-Ubl fusions as models of ubiquitination, sumoylation and neddylation of p53. Cell Cycle 7, 2519–2528 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Zhu, S., Zhang, H. & Matunis, M. J. SUMO modification through rapamycin-mediated heterodimerization reveals a dual role for Ubc9 in targeting RanGAP1 to nuclear pore complexes. Exp. Cell Res. 312, 1042–1049 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Johnson, E. S., Schwienhorst, I., Dohmen, R. J. & Blobel, G. The ubiquitin-like protein Smt3p is activated for conjugation to other proteins by an Aos1p/Uba2p heterodimer. EMBO J. 16, 5509–5519 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen, X. L. et al. Topoisomerase I-dependent viability loss in Saccharomyces cerevisiae mutants defective in both SUMO conjugation and DNA repair. Genetics 177, 17–30 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hirano, Y., Fukunaga, K. & Sugimoto, K. Rif1 and rif2 inhibit localization of tel1 to DNA ends. Mol. Cell 33, 312–322 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Boule, J. B., Vega, L. R. & Zakian, V. A. The yeast Pif1p helicase removes telomerase from telomeric DNA. Nature 438, 57–61 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Teixeira, M. T., Arneric, M., Sperisen, P. & Lingner, J. Telomere length homeostasis is achieved via a switch between telomerase-extendible and -nonextendible states. Cell 117, 323–335 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Marcand, S., Brevet, V., Mann, C. & Gilson, E. Cell cycle restriction of telomere elongation. Curr. Biol. 10, 487–490 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Wellinger, R. J., Wolf, A. J. & Zakian, V. A. Saccharomyces telomeres acquire single-strand TG1-3 tails late in S phase. Cell 72, 51–60 (1993).

    Article  CAS  PubMed  Google Scholar 

  28. Xhemalce, B. et al. Role of SUMO in the dynamics of telomere maintenance in fission yeast. Proc. Natl Acad. Sci USA 104, 893–898 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ungar, L. et al. A genome-wide screen for essential yeast genes that affect telomere length maintenance. Nucleic Acids Res. 37, 3840–3849 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Panse, V. G., Kuster, B., Gerstberger, T. & Hurt, E. Unconventional tethering of Ulp1 to the transport channel of the nuclear pore complex by karyopherins. Nat. Cell Biol. 5, 21–27 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Hiraga, S., Botsios, S. & Donaldson, A. D. Histone H3 lysine 56 acetylationby Rtt109 is crucial for chromosome positioning. J. Cell Biol. 183, 641–651 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Potts, P. R. & Yu, H. The SMC5/6 complex maintains telomere length in ALT cancer cells through SUMOylation of telomere-binding proteins. Nat. Struct. Mol. Biol. 14, 581–590 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Nagai, S. et al. Functional targeting of DNA damage to a nuclear pore-associated SUMO-dependent ubiquitin ligase. Science 322, 597–602 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kalocsay, M., Hiller, N. J. & Jentsch, S. Chromosome-wide Rad51 spreading and SUMO-H2A.Z-dependent chromosome fixation in response to a persistent DNA double-strand break. Mol. Cell 33, 335–343 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Galanty, Y. et al. Mammalian SUMO E3-ligases PIAS1 and PIAS4 promote responses to DNA double-strand breaks. Nature 462, 935–939 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Morris, J. R. et al. The SUMO modification pathway is involved in the BRCA1 response to genotoxic stress. Nature 462, 886–890 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Abdallah, P. et al. A two-step model for senescence triggered by a single critically short telomere. Nat. Cell Biol. 11, 988–993 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Khadaroo, B. et al. The DNA damage response at eroded telomeres and tethering to the nuclear pore complex. Nat. Cell Biol. 11, 980–987 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Marvin, M. E. et al. The association of yKu with subtelomeric core X sequences prevents recombination involving telomeric sequences. Genetics 183, 453–467 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ribes-Zamora, A., Mihalek, I., Lichtarge, O. & Bertuch, A. A. Distinct faces of the Ku heterodimer mediate DNA repair and telomeric functions. Nat. Struct. Mol. Biol. 14, 301–307 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Longtine, M. S. et al. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14, 953–961 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Parker, R. E. Introductory Statistics for Biology 2nd edn (Cambridge Univ.Press, 1997).

    Google Scholar 

Download references

Acknowledgements

We thank V. Zakian and E. Johnson for yeast strains, and N. Iglesias and M. Arneric for advice on the single-telomere extension system. H.C.F. was financially supported by Marie Curie and EMBO long-term fellowships, and the Gasser Laboratory by the Novartis Research Foundation. J.L. was supported by the Swiss National Science Foundation, the European Community’s Seventh Framework Programme (grant 200950) and a European Research Council advanced investigator grant (grant 232812). Both laboratories are part of the SNF-funded Frontiers in Genetics National Center of Competence in Research.

Author information

Authors and Affiliations

Authors

Contributions

S.M.G. and J.L. directed the study. H.C.F. did the biochemical experiments and with the help of V.K. carried out all telomere localization and minimal anchor experiments. B.L. did most of the telomere length assays and H.S. did the short-telomere mating assay. The manuscript was prepared by H.C.F. and S.M.G. with contributions from J.L., B.L. and H.S.

Corresponding author

Correspondence to Susan M. Gasser.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1118 kb)

Supplementary Information

Supplementary Table 1 (XLS 14 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferreira, H., Luke, B., Schober, H. et al. The PIAS homologue Siz2 regulates perinuclear telomere position and telomerase activity in budding yeast. Nat Cell Biol 13, 867–874 (2011). https://doi.org/10.1038/ncb2263

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2263

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing