Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Differential requirement for the dual functions of β-catenin in embryonic stem cell self-renewal and germ layer formation

Abstract

Canonical Wnt signalling has been implicated in mouse and human embryonic stem cell (ESC) maintenance; however, its requirement is controversial. β-catenin is the key component in this highly conserved Wnt pathway, acting as a transcriptional transactivator. However, β-catenin has additional roles at the plasma membrane regulating cell–cell adhesion, complicating the analyses of cells/tissues lacking β-catenin. We report here the generation of a Ctnnb1 (β-catenin)-deficient mouse ESC (mESC) line and show that self-renewal is maintained in the absence of β-catenin. Cell adhesion is partially rescued by plakoglobin upregulation, but fails to be maintained during differentiation. When differentiated as aggregates, wild-type mESCs form descendants of all three germ layers, whereas mesendodermal germ layer formation and neuronal differentiation are defective in Ctnnb1-deficient mESCs. A Tcf/Lef-signalling-defective β-catenin variant, which re-establishes cadherin-mediated cell adhesion, rescues definitive endoderm and neuroepithelial formation, indicating that the β-catenin cell-adhesion function is more important than its signalling function for these processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of β-catfl/fl and β-catΔ/Δ mESCs.
Figure 2: Self-renewal markers are not affected in β-catfl/fl and β-catΔ/Δ mESCs under different culture conditions.
Figure 3: Cell–cell adhesion defects in β-catfl/fl and β-catΔ/Δ mESCs in the presence and absence of Jup knockdown.
Figure 4: Morphological appearance and plakoglobin levels of β-catfl/fl, β-catΔ/Δ, β-catrescWT and β-catrescΔC embryoid bodies during differentiation.
Figure 5: Analyses of Tcf/Lef-mediated transcriptional activity.
Figure 6: Neuroectodermal differentiation potential of β-catfl/fl, β-catΔ/Δ, β-catrescWT and β-catrescΔC embryoid bodies.
Figure 7: Mesendodermal differentiation potential of β-catfl/fl, β-catΔ/Δ, β-catrescWT and β-catrescΔC embryoid bodies.

Similar content being viewed by others

References

  1. Murry, C. E. & Keller, G. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 132, 661–680 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Doetschman, T. C., Eistetter, H., Katz, M., Schmidt, W. & Kemler, R. The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J. Embryol. Exp. Morphol. 87, 27–45 (1985).

    CAS  PubMed  Google Scholar 

  3. Burkert, U., von Ruden, T. & Wagner, E. F. Early fetal hematopoietic development from in vitro differentiated embryonic stem cells. New Biol. 3, 698–708 (1991).

    CAS  PubMed  Google Scholar 

  4. Smith, A. G. et al. Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature 336, 688–690 (1988).

    Article  CAS  PubMed  Google Scholar 

  5. Williams, R. L. et al. Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature 336, 684–687 (1988).

    Article  CAS  PubMed  Google Scholar 

  6. Ying, Q. L., Nichols, J., Chambers, I. & Smith, A. BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115, 281–292 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Sato, N., Meijer, L., Skaltsounis, L., Greengard, P. & Brivanlou, A. H. Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat. Med. 10, 55–63 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Xu, R. H. et al. Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells. Nat. Methods 2, 185–190 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Daheron, L. et al. LIF/STAT3 signaling fails to maintain self-renewal of human embryonic stem cells. Stem Cells 22, 770–778 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Reubinoff, B. E., Pera, M. F., Fong, C. Y., Trounson, A. & Bongso, A. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat. Biotechnol. 18, 399–404 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Umehara, H. et al. Efficient derivation of embryonic stem cells by inhibition of glycogen synthase kinase-3. Stem Cells 25, 2705–2711 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Mao, J. et al. Low-density lipoprotein receptor-related protein-5 binds to Axin and regulates the canonical Wnt signaling pathway. Mol. Cell 7, 801–809 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Logan, C. Y. & Nusse, R. The Wnt signaling pathway in development and disease. Annu. Rev. Cell Dev. Biol. 20, 781–810 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Anton, R., Kestler, H. A. & Kuhl, M. β-catenin signaling contributes to stemness and regulates early differentiation in murine embryonic stem cells. FEBS Lett. 581, 5247–5254 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Ying, Q. L. et al. The ground state of embryonic stem cell self-renewal. Nature 453, 519–523 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Soncin, F. et al. Abrogation of E-cadherin-mediated cell–cell contact in mouse embryonic stem cells results in reversible LIF-independent self-renewal. Stem Cells 27, 2069–2080 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Wagner, R. T., Xu, X., Yi, F., Merrill, B. J. & Cooney, A. J. Canonical Wnt/β-catenin regulation of liver receptor homolog-1 mediates pluripotency gene expression. Stem Cells 28, 1794–1804 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Huelsken, J. et al. Requirement for β-catenin in anterior–posterior axis formation in mice. J. Cell Biol. 148, 567–578 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kemler, R. From cadherins to catenins: cytoplasmic protein interactions and regulation of cell adhesion. Trends Genet. 9, 317–321 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Buxton, R. S. & Magee, A. I. Structure and interactions of desmosomal and other cadherins. Semin. Cell Biol. 3, 157–167 (1992).

    Article  CAS  PubMed  Google Scholar 

  22. Fukunaga, Y. et al. Defining the roles of β-catenin and plakoglobin in cell–cell adhesion: isolation of β-catenin/plakoglobin-deficient F9 cells. Cell Struct. Funct. 30, 25–34 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Zhou, J. et al. Upregulation of γ-catenin compensates for the loss of β-catenin in adult cardiomyocytes. Am. J. Physiol. Heart Circ. Physiol. 292, H270–H276 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Huelsken, J., Vogel, R., Erdmann, B., Cotsarelis, G. & Birchmeier, W. β-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell 105, 533–545 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Williams, B. O., Barish, G. D., Klymkowsky, M. W. & Varmus, H. E. A comparative evaluation of β-catenin and plakoglobin signaling activity. Oncogene 19, 5720–5728 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Conacci-Sorrell, M. E. et al. Nr-CAM is a target gene of the β-catenin/LEF-1 pathway in melanoma and colon cancer and its expression enhances motility and confers tumorigenesis. Genes Dev. 16, 2058–2072 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Biechele, T. L. & Moon, R. T. Assaying β-catenin/TCF transcription with β-catenin/TCF transcription-based reporter constructs. Methods Mol. Biol. 468, 99–110 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Sustmann, C., Flach, H., Ebert, H., Eastman, Q. & Grosschedl, R. Cell-type-specific function of BCL9 involves a transcriptional activation domain that synergizes with β-catenin. Mol. Cell Biol. 28, 3526–3537 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Haegel, H. et al. Lack of β-catenin affects mouse development at gastrulation. Development 121, 3529–3537 (1995).

    CAS  PubMed  Google Scholar 

  30. Ohsugi, M. et al. Expression and cell membrane localization of catenins during mouse preimplantation development. Dev. Dyn. 206, 391–402 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Keller, G. M. In vitro differentiation of embryonic stem cells. Curr. Opin. Cell Biol. 7, 862–869 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. ten Berge, D. et al. Wnt signaling mediates self-organization and axis formation in embryoid bodies. Cell Stem Cell 3, 508–518 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Yasunaga, M. et al. Induction and monitoring of definitive and visceral endoderm differentiation of mouse ES cells. Nat. Biotechnol. 23, 1542–1550 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Ogawa, K., Nishinakamura, R., Iwamatsu, Y., Shimosato, D. & Niwa, H. Synergistic action of Wnt and LIF in maintaining pluripotency of mouse ES cells. Biochem. Biophys. Res. Commun. 343, 159–166 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Hao, J., Li, T. G., Qi, X., Zhao, D. F. & Zhao, G. Q. WNT/β-catenin pathway up-regulates Stat3 and converges on LIF to prevent differentiation of mouse embryonic stem cells. Dev. Biol. 290, 81–91 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Singla, D. K., Schneider, D. J., LeWinter, M. M. & Sobel, B. E. wnt3a but not wnt11 supports self-renewal of embryonic stem cells. Biochem. Biophys. Res. Commun. 345, 789–795 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Takao, Y., Yokota, T. & Koide, H. β-catenin up-regulates Nanog expression through interaction with Oct-3/4 in embryonic stem cells. Biochem. Biophys. Res. Commun. 353, 699–705 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Kielman, M. F. et al. Apc modulates embryonic stem-cell differentiation by controlling the dosage of β-catenin signaling. Nat. Genet. 32, 594–605 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Wray, J. et al. Inhibition of glycogen synthase kinase-3 alleviates Tcf3 repression of the pluripotency network and increases embryonic stem cell resistance to differentiation Nat. Cell Biol. doi:10.1038/ncb2267 (2011).

  40. Brons, I. G. et al. Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448, 191–195 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Cowin, P., Kapprell, H. P., Franke, W. W., Tamkun, J. & Hynes, R. O. Plakoglobin: a protein common to different kinds of intercellular adhering junctions. Cell 46, 1063–1073 (1986).

    Article  CAS  PubMed  Google Scholar 

  42. Peifer, M., McCrea, P. D., Green, K. J., Wieschaus, E. & Gumbiner, B. M. The vertebrate adhesive junction proteins β-catenin and plakoglobin and the Drosophila segment polarity gene armadillo form a multigene family with similar properties. J. Cell Biol. 118, 681–691 (1992).

    Article  CAS  PubMed  Google Scholar 

  43. Nagafuchi, A., Takeichi, M. & Tsukita, S. The 102 kd cadherin-associated protein: similarity to vinculin and posttranscriptional regulation of expression. Cell 65, 849–857 (1991).

    Article  CAS  PubMed  Google Scholar 

  44. Breen, E., Clarke, A., Steele, G. Jr. & Mercurio, A. M. Poorly differentiated colon carcinoma cell lines deficient in α-catenin expression express high levels of surface E-cadherin but lack Ca(2+)-dependent cell–cell adhesion. Cell Adhes. Commun. 1, 239–250 (1993).

    Article  CAS  PubMed  Google Scholar 

  45. Bajpai, S., Feng, Y., Krishnamurthy, R., Longmore, G. D. & Wirtz, D. Loss of α-catenin decreases the strength of single E-cadherin bonds between human cancer cells. J. Biol. Chem. 284, 18252–18259 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bajpai, S. et al. α-Catenin mediates initial E-cadherin-dependent cell–cell recognition and subsequent bond strengthening. Proc. Natl Acad. Sci. USA 105, 18331–18336 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kofron, M., Spagnuolo, A., Klymkowsky, M., Wylie, C. & Heasman, J. The roles of maternal α-catenin and plakoglobin in the early Xenopus embryo. Development 124, 1553–1560 (1997).

    CAS  PubMed  Google Scholar 

  48. Ben-Ze’ev, A. & Geiger, B. Differential molecular interactions of β-catenin and plakoglobin in adhesion, signaling and cancer. Curr. Opin. Cell Biol. 10, 629–639 (1998).

    Article  PubMed  Google Scholar 

  49. Miller, J. R. & Moon, R. T. Analysis of the signaling activities of localization mutants of β-catenin during axis specification in Xenopus. J. Cell Biol. 139, 229–243 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Teuliere, J. et al. β-catenin-dependent and -independent effects of ΔN-plakoglobin on epidermal growth and differentiation. Mol. Cell Biol. 24, 8649–8661 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Maeda, O. et al. Plakoglobin (γ-catenin) has TCF/LEF family-dependent transcriptional activity in β-catenin-deficient cell line. Oncogene 23, 964–972 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. De Vries, W. N. et al. Maternal β-catenin and E-cadherin in mouse development. Development 131, 4435–4445 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Lindsley, R. C., Gill, J. G., Kyba, M., Murphy, T. L. & Murphy, K. M. Canonical Wnt signaling is required for development of embryonic stem cell-derived mesoderm. Development 133, 3787–3796 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Niwa, H., Yamamura, K. & Miyazaki, J. Efficient selection forhigh-expression transfectants with a novel eukaryotic vector. Gene 108, 193–199 (1991).

    Article  CAS  PubMed  Google Scholar 

  55. Arnold, S. J. et al. Brachyury is a target gene of the Wnt/β-catenin signaling pathway. Mech. Dev. 91, 249–258 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Yamaguchi, T. P., Takada, S., Yoshikawa, Y., Wu, N. & McMahon, A. P. T (Brachyury) is a direct target of Wnt3a during paraxial mesoderm specification. Genes Dev. 13, 3185–3190 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Aubert, J., Dunstan, H., Chambers, I. & Smith, A. Functional gene screening in embryonic stem cells implicates Wnt antagonism in neural differentiation. Nat. Biotechnol. 20, 1240–1245 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Yoshikawa, Y., Fujimori, T., McMahon, A. P. & Takada, S. Evidence that absence of Wnt-3a signaling promotes neuralization instead of paraxial mesoderm development in the mouse. Dev. Biol. 183, 234–242 (1997).

    Article  CAS  PubMed  Google Scholar 

  59. Verani, R. et al. Expression of the Wnt inhibitor Dickkopf-1 is required for the induction of neural markers in mouse embryonic stem cells differentiating in response to retinoic acid. J. Neurochem. 100, 242–250 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Murashov, A. K. et al. Directed differentiation of embryonic stem cells into dorsal interneurons. FASEB J. 19, 252–254 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Otero, J. J., Fu, W., Kan, L., Cuadra, A. E. & Kessler, J. A. β-catenin signaling is required for neural differentiation of embryonic stem cells. Development 131, 3545–3557 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Junghans, D., Hack, I., Frotscher, M., Taylor, V. & Kemler, R. β-catenin-mediated cell-adhesion is vital for embryonic forebrain development. Dev. Dyn. 233, 528–539 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Hierholzer, A. & Kemler, R. β-catenin-mediated signaling and cell adhesion in postgastrulation mouse embryos. Dev. Dyn. 239, 191–199 (2010).

    CAS  PubMed  Google Scholar 

  64. Lien, W. H., Klezovitch, O., Fernandez, T. E., Delrow, J. & Vasioukhin, V. αE-catenin controls cerebral cortical size by regulating the hedgehog signaling pathway. Science 311, 1609–1612 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Giannini, A. L., Vivanco, M. & Kypta, R. M. α-catenin inhibits β-catenin signaling by preventing formation of a β-catenin · T-cell factor · DNA complex. J. Biol. Chem. 275, 21883–21888 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Kelly, O. G., Pinson, K. I. & Skarnes, W. C. The Wnt co-receptors Lrp5 and Lrp6 are essential for gastrulation in mice. Development 131, 2803–2815 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Liu, P. et al. Requirement for Wnt3 in vertebrate axis formation. Nat. Genet. 22, 361–365 (1999).

    Article  CAS  PubMed  Google Scholar 

  68. Kanda, T., Sullivan, K. F. & Wahl, G. M. Histone-GFP fusion protein enables sensitive analysis of chromosome dynamics in living mammalian cells. Curr. Biol. 8, 377–385 (1998).

    Article  CAS  PubMed  Google Scholar 

  69. Neumann, S. et al. Nesprin-2 interacts with α-catenin and regulates Wnt signaling at the nuclear envelope. J. Biol. Chem. 285, 34932–34938 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank W. Birchmeier (MDC, Berlin, Germany), R. Grosschedl (MPI, Freiburg, Germany) and A. Wutz (CSCR, Cambridge, UK) for reagents, R. Latham for Wnt3aCM, R. Peachey, G. Resch, P. Pasierbeck, G. Stengl, V. Komnenovic and M. Zeba for help and technical advice, M. Radolf and H. Scheuch for help with microarray studies, C. Theussl and J. Wojciechowski for blastocyst injections, and A. Smith for helpful comments. Research in the laboratory of C.H. has been supported by Boehringer Ingelheim, the project has been funded in part by the NoE Cells into Organs (LSHM-CT-2003-504468), N.L. was supported by the Austrian Science Fund (FWF Grant No. P19281-B16) and M.W. is supported by a grant from the Arthritis Research Campaign (ARC Grant No. 18075). R.T.M. is an investigator of the HHMI and T.B. was supported by NIH grant R01 GM081619-01.

Author information

Authors and Affiliations

Authors

Contributions

N.L. carried out, analysed and interpreted experiments. M.W. and D.M. carried out pulldown studies. T.B. and R.T.M. generated and provided BAR/fuBAR lentiviruses, and commented on the paper. C.H. supervised the study and wrote the paper together with N.L.

Corresponding author

Correspondence to Christine Hartmann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 886 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lyashenko, N., Winter, M., Migliorini, D. et al. Differential requirement for the dual functions of β-catenin in embryonic stem cell self-renewal and germ layer formation. Nat Cell Biol 13, 753–761 (2011). https://doi.org/10.1038/ncb2260

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2260

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing