Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The bidirectional depolymerizer MCAK generates force by disassembling both microtubule ends

Abstract

During cell division the replicated chromosomes are segregated precisely towards the spindle poles1,2. Although many cellular processes involving motility require ATP-fuelled force generation by motor proteins, most models of the chromosome movement invoke the release of energy stored at strained (owing to GTP hydrolysis) plus ends of microtubules3,4. This energy is converted into chromosome movement through passive couplers5,6,7, whereas the role of molecular motors is limited to the regulation of microtubule dynamics. Here we report, that the microtubule-depolymerizing activity of MCAK (mitotic centromere-associated kinesin), the founding member of the kinesin-13 family, is accompanied by the generation of significant tension—remarkably, at both microtubule ends. An MCAK-decorated bead strongly attaches to the microtubule side, but readily slides along it in either direction under weak external loads and tightly captures and disassembles both microtubule ends. We show that the depolymerization force increases with the number of interacting MCAK molecules and is 1 pN per motor. These results provide a simple model for the generation of driving force and the regulation of chromosome segregation by the activity of MCAK at both kinetochores and spindle poles through a ‘side-sliding, end-catching’ mechanism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Analysis of MCAK-dependent bead movement.
Figure 2: Tension generation depends on MCAK density.
Figure 3: Measurement of the depolymerization force generated on two simultaneously captured microtubules.
Figure 4: MCAK–microtubule interaction markedly depends on the region of the microtubule.
Figure 5: Impact of free tubulin and the model of MCAK action.

Similar content being viewed by others

References

  1. Mitchison, T. J. & Salmon, E. D. Mitosis: a history of division. Nat. Cell Biol. 3, E17–E21 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Wittmann, T., Hyman, A. & Desai, A. The spindle: a dynamic assembly of microtubules and motors. Nat. Cell Biol. 3, E28–E34 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Desai, A. & Mitchison, T. J. Microtubule polymerization dynamics. Annu. Rev. Cell Dev. Biol. 13, 83–117 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Grishchuk, E. L., Molodtsov, M. I., Ataullakhanov, F. I. & McIntosh, J. R. Force production by disassembling microtubules. Nature 438, 384–388 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Asbury, C. L., Gestaut, D. R., Powers, A. F., Franck, A. D. & Davis, T. N. The Dam1 kinetochore complex harnesses microtubule dynamics to produce force and movement. Proc. Natl Acad. Sci. USA 103, 9873–9878 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Grishchuk, E. L. et al. The Dam1 ring binds microtubules strongly enough to be a processive as well as energy-efficient coupler for chromosome motion. Proc. Natl Acad. Sci. USA 105, 15423–15428 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Powers, A. F. et al. The Ndc80 kinetochore complex forms load-bearing attachments to dynamic microtubule tips via biased diffusion. Cell 136, 865–875 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Inoue, S. & Salmon, E. D. Force generation by microtubule assembly/disassembly in mitosis and related movements. Mol. Biol. Cell 6, 1619–1640 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wordeman, L. & Mitchison, T. J. Identification and partial characterization of mitotic centromere-associated kinesin, a kinesin-related protein that associates with centromeres during mitosis. J. Cell Biol. 128, 95–104 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Walczak, C. E., Gan, E. C., Desai, A., Mitchison, T. J. & Kline-Smith, S. L. The microtubule-destabilizing kinesin XKCM1 is required for chromosome positioning during spindle assembly. Curr. Biol. 12, 1885–1889 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Walczak, C. E. & Mitchison, T. J. Kinesin-related proteins at mitotic spindle poles: function and regulation. Cell 85, 943–946 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Rogers, G. C. et al. Two mitotic kinesins cooperate to drive sister chromatid separation during anaphase. Nature 427, 364–370 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Maney, T., Hunter, A. W., Wagenbach, M. & Wordeman, L. Mitotic centromere-associated kinesin is important for anaphase chromosome segregation. J. Cell Biol. 142, 787–801 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Desai, A., Verma, S., Mitchison, T. J. & Walczak, C. E. Kin I kinesins are microtubule-destabilizing enzymes. Cell 96, 69–78 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Kline-Smith, S. L. & Walczak, C. E. The microtubule-destabilizing kinesin XKCM1 regulates microtubule dynamic instability in cells. Mol. Biol. Cell 13, 2718–2731 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Helenius, J., Brouhard, G., Kalaidzidis, Y., Diez, S. & Howard, J. The depolymerizing kinesin MCAK uses lattice diffusion to rapidly target microtubule ends. Nature 441, 115–119 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Hyman, A. A., Salser, S., Drechsel, D. N., Unwin, N. & Mitchison, T. J. Role of GTP hydrolysis in microtubule dynamics: information from a slowly hydrolyzable analogue, GMPCPP. Mol. Biol. Cell 3, 1155–1167 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Desai, A., Verma, S., Mitchison, T. J. & Walczak, C. E. Kin I kinesins are microtubule-destabilizing enzymes. Cell 96, 69–78 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Varga, V. et al. Yeast kinesin-8 depolymerizes microtubules in a length-dependent manner. Nat. Cell Biol. 8, 957–962 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Müller-Reichert, T., Chrétien, D., Severin, F. & Hyman, A. A. Structural changes at microtubule ends accompanying GTP hydrolysis: information from a slowly hydrolyzable analogue of GTP, guanylyl (α,β)methylenediphosphonate. Proc. Natl Acad. Sci. USA 95, 3661–3666 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Koshland, D. E., Mitchison, T. J. & Kirschner, M. W. Polewards chromosome movement driven by microtubule depolymerization in vitro. Nature 331, 499–504 (1988).

    Article  CAS  PubMed  Google Scholar 

  22. McEwen, B. F., Heagle, A. B., Cassels, G. O., Buttle, K. F. & Rieder, C. L. Kinetochore fibre maturation in PtK1 cells and its implications for the mechanisms of chromosome congression and anaphase onset. J. Cell Biol. 137, 1567–1580 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bormuth, V., Varga, V., Howard, J. & Schaffer, E. Protein friction limits diffusive and directed movements of kinesin motors on microtubules. Science 325, 870–873 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Grissom, P. M. et al. Kinesin-8 from fission yeast: a heterodimeric, plus-end-directed motor that can couple microtubule depolymerization to cargo movement. Mol. Biol. Cell 20, 963–972 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mitchison, T. J. & Kirschner, M. W. Some thoughts on the partitioning of tubulin between monomer and polymer under conditions of dynamic instability. Cell Biophys. 11, 35–55 (1987).

    Article  CAS  PubMed  Google Scholar 

  26. Ohi, R., Burbank, K., Liu, Q. & Mitchison, T. J. Nonredundant functions of Kinesin-13s during meiotic spindle assembly. Curr Biol. 17, 953–959 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Hertzer, K. M. et al. Full-length dimeric MCAK is a more efficient microtubule depolymerase than minimal domain monomeric MCAK. Mol. Biol. Cell 17, 700–710 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ogawa, T., Nitta, R., Okada, Y. & Hirokawa, N. A common mechanism for microtubule destabilizers—M type kinesins stabilize curling of the protofilament using the class-specific neck and loops. Cell 116, 591–602 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Bloom, K. & Joglekar, A. Towards building a chromosome segregation machine. Nature 463, 446–456 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ohi, R., Sapra, T., Howard, J. & Mitchison, T. J. Differentiation of cytoplasmic and meiotic spindle assembly MCAK functions by Aurora B-dependent phosphorylation. Mol. Biol. Cell 15, 2895–2906 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Andrews, P. D. et al. Aurora B regulates MCAK at the mitotic centromere. Dev. Cell 6, 253–268 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Lan, W. et al. Aurora B phosphorylates centromeric MCAK and regulates its localization and microtubule depolymerization activity. Curr. Biol. 14, 273–286 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Ohi, R., Coughlin, M. L., Lane, W. S. & Mitchison, T. J. An inner centromere protein that stimulates the microtubule depolymerizing activity of a KinI kinesin. Dev. Cell 5, 309–321 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Kinoshita, K., Arnal, I., Desai, A., Drechsel, D. N. & Hyman, A. A. Reconstitution of physiological microtubule dynamics using purified components. Science 294, 1340–1343 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Shimozawa, T. & Ishiwata, S. Mechanical distortion of single actin filaments induced by external force: detection by fluorescence imaging. Biophys. J. 96, 1036–1044 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Field, C. M. et al. A purified Drosophila septin complex forms filaments and exhibits GTPase activity. J. Cell Biol. 133, 605–616 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank K. Kinosita, Jr., for critical reading and comments. This work was supported by Grants-in-Aid for Specially Promoted Research, Scientific Research (S) and the Asia–Africa Science and Technology Strategic Cooperation Promotion Program, Special Coordination Funds for Promoting Science and Technology from the Ministry of Education, Culture, Sports, Science and Technology, Japan (to S.I.). This work was also supported by a Start-up Grant-in-Aid for Young Scientists (to S.U.).

Author information

Authors and Affiliations

Authors

Contributions

Y.O. carried out the experiments and analysed the results. Y.O., S.V.M. and S.I. designed the experiments and wrote the manuscript. Y.O., S.U. and T.O. prepared DNA constructs and purified proteins. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Shin’ichi Ishiwata.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1845 kb)

Supplementary Information

Supplementary Movie 1 (MOV 1550 kb)

Supplementary Information

Supplementary Movie 2 (MOV 682 kb)

Supplementary Information

Supplementary Movie 3 (MOV 460 kb)

Supplementary Information

Supplementary Movie 4 (MOV 1558 kb)

Supplementary Information

Supplementary Movie 5 (MOV 4763 kb)

Supplementary Information

Supplementary Movie 6 (MOV 3793 kb)

Supplementary Information

Supplementary Movie 7 (MOV 1033 kb)

Supplementary Information

Supplementary Information (XLS 16 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oguchi, Y., Uchimura, S., Ohki, T. et al. The bidirectional depolymerizer MCAK generates force by disassembling both microtubule ends. Nat Cell Biol 13, 846–852 (2011). https://doi.org/10.1038/ncb2256

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2256

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing