Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Semaphorin 3A induces CaV2.3 channel-dependent conversion of axons to dendrites

Abstract

Polarized neurites (axons and dendrites) form the functional circuitry of the nervous system. Secreted guidance cues often control the polarity of neuron migration and neurite outgrowth by regulating ion channels. Here, we show that secreted semaphorin 3A (Sema3A) induces the neurite identity of Xenopus spinal commissural interneurons (xSCINs) by activating CaV2.3 channels (CaV2.3). Sema3A treatment converted the identity of axons of cultured xSCINs to that of dendrites by recruiting functional CaV2.3. Inhibition of Sema3A signalling prevented both the expression of CaV2.3 and acquisition of the dendrite identity, and inhibition of CaV2.3 function resulted in multiple axon-like neurites of xSCINs in the spinal cord. Furthermore, Sema3A-triggered cGMP production and PKG activity induced, respectively, the expression of functional CaV2.3 and the dendrite identity. These results reveal a mechanism by which a guidance cue controls the identity of neurites during nervous system development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sema3A converts the identity of axons to dendrites by CaV2.3 activity.
Figure 2: Sema3A increases growth-cone CaV2.3 currents.
Figure 3: Sema3A is required for CaV2.3 expression in Xenopus spinal cords.
Figure 4: Sema3A signalling is required for acquisition of the dendrite identity of putative xSCINs in vivo.
Figure 5: CaV2.3 function is required for the dendrite identity of xSCINs in vivo.
Figure 6: CaV2.3 activity suppresses the acquisition of the axon identity of xSCINs in vivo.
Figure 7: Sema3A-induced cGMP causes recruitment and expression of CaV2.3 and PKG is required as a co-activator for acquisition of the dendrite identity.
Figure 8: Model depicting Sema3A-induced acquisition of the dendrite identity.

Similar content being viewed by others

References

  1. Arimura, N. & Kaibuchi, K. Neuronal polarity: from extracellular signals to intracellular mechanisms. Nat. Rev. Neurosci. 8, 194–205 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Barnes, A. & Polleux, F. Establishment of axon–dendrite polarity in developing neurons. Annu. Rev. Neurosci. 32, 347–381 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jan, Y. & Jan, L. The control of dendrite development. Neuron 40, 229–242 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Adler, C., Fetter, R. & Bargmann, C. I. UNC-6/Netrin induces neuronal asymmetry and defines the site of axon formation. Nat. Neurosci. 9, 511–518 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yi, J.J., Barnes, A.P., Hand, R, Polleux, F. & Ehlers, M.D. TGF-β signalling specifies axons during brain development. Cell 142, 144–157 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Poon, V., Klassen, M. & Shen, K. UNC-6/netrin and its receptor UNC-5 locally exclude presynaptic components from dendrites. Nature 455, 669–673 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Roberts, A., Dale, N., Ottersen, O. & Storm-Mathisen, J. Development and characterization of commissural interneurones in the spinal cord of Xenopus laevis embryos revealed by antibodies to glycine. Development 103, 447–461 (1988).

    CAS  PubMed  Google Scholar 

  8. Roberts, A., Dale, N., Ottersen, O. P. & Storm-Mathisen, J. The early development of neurons with GABA immunoreactivity in the CNS of Xenopus laevis embryos. J. Comp. Neurol. 261, 435–449 (1987).

    Article  CAS  PubMed  Google Scholar 

  9. Henley, J. R. & Poo, M. M. Guiding neuronal growth cones using Ca2+ signals. Trends Cell Biol. 14, 320–30 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Hong, K. & Nishiyama, M. From guidance signals to movement: signaling molecules governing growth cone turning. Neuroscientist 16, 65–78 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Guan, C., Xu, H., Jin, M., Yuan, X. & Poo, M. Long-range Ca2+ signalling from growth cone to soma mediates reversal of neuronal migration induced by slit-2. Cell 129, 385–395 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Polleux, F., Morrow, T. & Ghosh, A. Semaphorin 3A is a chemoattractant for cortical apical dendrites. Nature 404, 567–573 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Fenstermaker, V., Chen, Y., Ghosh, A. & Yuste, R. Regulation of dendritic length and branching by semaphorin 3A. J. Neurobiol. 58, 403–412 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Morita, A. et al. Regulation of dendritic branching and spine maturation by semaphorin3A-fyn signalling. J. Neurosci. 26, 2971–2980 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tran, T. S. et al. Secreted semaphorins control spine distribution and morphogenesis in the postnatal CNS. Nature 462, 1065–1069 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nishiyama, M., von Schimmelmann, M. J., Togashi, K., Findley, W. & Hong, K. Membrane potential shifts caused by diffusible guidance signals direct growth-cone turning. Nat. Neurosci. 11, 762–771 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Togashi, K. et al. Cyclic GMP-gated CNG channels function in Sema3A-induced growth cone repulsion. Neuron 58, 694–707 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Song, H. J. et al. Conversion of neuronal growth cone responses from repulsion to attraction by cyclic nucleotides. Science 281, 1515–1518 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Craig, A. M. & Banker, G. Neuronal polarity. Annu. Rev. Neurosci. 17, 267–310 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Esch, T., Lemmon, V. & Banker, G. Local presentation of substrate molecules directs axon specification by cultured hippocampal neurons. J. Neurosci. 19, 6417–6426 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Goshima, Y. et al. A novel action of collapsin: collapsin-1 increases antero- and retrograde axoplasmic transport independently of growth cone collapse. J. Neurobiol. 33, 316–328 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Bradke, F. & Dotti, C. G. Differentiated neurons retain the capacity to generate axons from dendrites. Curr. Biol. 10, 1467–1470 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Gomis-Rüth, S., Wierenga, C. J. & Bradke, F. Plasticity of polarization: changing dendrites into axons in neurons integrated in neuronal circuits. Curr. Biol. 18, 992–1000 (2008).

    Article  PubMed  Google Scholar 

  24. Song, A. H. et al. A selective filter for cytoplasmic transport at the axon initial segment. Cell 136, 1148–1160 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Jiménez-González, C., McLaren, G. J. & Dale, N. Development of Ca2+-channel and BK-channel expression in embryos and larvae of Xenopus laevis. Eur. J. Neurosci. 18, 2175–2187 (2003).

    Article  PubMed  Google Scholar 

  26. Gu, X. & Spitzer, N. C. Low-threshold Ca2+ current and its role in spontaneous elevations of intracellular Ca2+ in developing Xenopus neurons. J. Neurosci. 13, 4936–4948 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hong, K., Nishiyama, M., Henley, J., Tessier-Lavigne, M. & Poo, M. Calcium signalling in the guidance of nerve growth by netrin-1. Nature 403, 93–98 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Li, W., Thaler, C. & Brehm, P. Calcium channels in Xenopus spinal neurons differ in somas and presynaptic terminals. J. Neurophysiol. 86, 269–279 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Nishiyama, M. et al. Cyclic AMP/GMP-dependent modulation of Ca2+ channels sets the polarity of nerve growth-cone turning. Nature 423, 990–995 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Moon, M. S. & Gomez, T. M. Adjacent pioneer commissural interneuron growth cones switch from contact avoidance to axon fasciculation after midline crossing. Dev. Biol. 288, 474–486 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Li, W. C. et al. Axon and dendrite geography predict the specificity of synaptic connections in a functioning spinal cord network. Neural Dev. 2, 17 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Marı´n, O., Yaron, A., Bagri, A., Tessier-Lavigne, M. & Rubenstein, J. L. Sorting of striatal and cortical interneurons regulated by semaphorin–neuropilin interactions. Science 293, 872–875 (2001).

    Article  Google Scholar 

  33. Stein, E. & Tessier-Lavigne, M. Hierarchical organization of guidance receptors: silencing of netrin attraction by slit through a Robo/DCC receptor complex. Science 291, 1928–1938 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Shelly, M. et al. Local and long-range reciprocal regulation of cAMP and cGMP in axon/dendrite formation. Science 327, 547–552 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Shelly, M., Cancedda, L., Heilshorn, S., Sumbre, G. & Poo, M. LKB1/STRAD promotes axon initiation during neuronal polarization. Cell 129, 565–577 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Piper, M., Salih, S., Weinl, C., Holt, C. E. & Harris, W. A. Endocytosis-dependent desensitization and protein synthesis-dependent resensitization in retinal growth cone adaptation. Nat. Neurosci. 8, 179–186 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Campbell, D. S. & Holt, C. E. Chemotropic responses of retinal growth cones mediated by rapid local protein synthesis and degradation. Neuron 32, 1013–1026 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Campbell, D. S. & Holt, C. E. Apoptotic pathway and MAPKs differentially regulate chemotropic responses of retinal growth cones. Neuron 37, 939–952 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Pham, N. et al. The guanine nucleotide exchange factor CNrasGEF activates ras in response to cAMP and cGMP. Curr. Biol. 10, 555–558 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Stornetta, R. L. & Zhu, J. J. Ras and Rap signalling in synaptic plasticity and mental disorders. Neuroscientist 17, 54–78 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Barnes, A. et al. LKB1 and SAD kinases define a pathway required for the polarization of cortical neurons. Cell 129, 549–563 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Jiang, H., Guo, W., Liang, X. & Rao, Y. Both the establishment and the maintenance of neuronal polarity require active mechanisms: critical roles of GSK-3β and its upstream regulators. Cell 120, 123–135 (2005).

    CAS  PubMed  Google Scholar 

  43. Uchida, Y. et al. Semaphorin3A signalling is mediated via sequential Cdk5 and GSK3β phosphorylation of CRMP2: implication of common phosphorylating mechanism underlying axon guidance and Alzheimer’s disease. Genes Cells 10, 165–179 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Yoshimura, T. et al. GSK-3β regulates phosphorylation of CRMP-2 and neuronal polarity. Cell 120, 137–149 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Liu, F., Iqbal, K., Grundke-Iqbal, I. & Gong, C. X. Involvement of aberrant glycosylation in phosphorylation of tau by cdk5 and GSK-3β. FEBS Lett. 530, 209–214 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Magee, J. C. & Johnston, D. Characterization of single voltage-gated Na+ and Ca2+ channels in apical dendrites of rat CA1 pyramidal neurons. J. Physiol. 487, 67–90 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sabatini, B. L. & Svoboda, K. Analysis of calcium channels in single spines using optical fluctuation analysis. Nature 408, 589–593 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Kaneko, S. et al. A selective Sema3A inhibitor enhances regenerative responses and functional recovery of the injured spinal cord. Nat. Med. 12, 1380–1389 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Hong, K. et al. A ligand-gated association between cytoplasmic domains of UNC5 and DCC family receptors converts netrin-induced growth cone attraction to repulsion. Cell 97, 927–941 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Viereck, C., Tucker, R. P., Binder, L. I. & Matus, A. Phylogenetic conservation of brain microtubule-associated proteins MAP2 and tau. Neuroscience 26, 893–904 (1988).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs W. R. Jelinek, N. J. Cowan, M. E. Rice, M-M. Poo, D. Ginty and A. L. Kolodkin for critical comments on the manuscript, S. M. Strittmatter for the NP-1(0111) and L. I. Binder and G. Tian for technical assistance. This work was supported by grants from NIH/NINDS (NS042823 and CRCNS Program, NS064671, K.H.), MEXT (Grants-in-Aid and Targeted Protein Research Project, Y.G.) and RIKEN (Computational Science Research Program, S.I.).

Author information

Authors and Affiliations

Authors

Contributions

M.N., K.T., M.J.v.S. and K.H. designed and carried out experiments and analysed the data; C-S.L. helped with immunocytochemisty; N.Y. and Y.G. provided proteins; M.N., K.T., S-i.M. and S.I. carried out or supervised in vivo imaging analyses; M.N. and K.H. supervised the project and wrote the manuscript.

Corresponding authors

Correspondence to Makoto Nishiyama or Kyonsoo Hong.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 868 kb)

Supplementary Information

Supplementary Movie 1 (AVI 16424 kb)

Supplementary Information

Supplementary Movie 2 (AVI 13542 kb)

Supplementary Information

Supplementary Movie 3 (AVI 22767 kb)

Supplementary Information

Supplementary Movie 4 (AVI 26993 kb)

Supplementary Information

Supplementary Table 1 (XLS 26 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishiyama, M., Togashi, K., von Schimmelmann, M. et al. Semaphorin 3A induces CaV2.3 channel-dependent conversion of axons to dendrites. Nat Cell Biol 13, 676–685 (2011). https://doi.org/10.1038/ncb2255

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2255

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing