The Rho GEFs LARG and GEF-H1 regulate the mechanical response to force on integrins


How individual cells respond to mechanical forces is of considerable interest to biologists as force affects many aspects of cell behaviour1. The application of force on integrins triggers cytoskeletal rearrangements and growth of the associated adhesion complex, resulting in increased cellular stiffness2,3, also known as reinforcement4. Although RhoA has been shown to play a role during reinforcement3, the molecular mechanisms that regulate its activity are unknown. By combining biochemical and biophysical approaches, we identified two guanine nucleotide exchange factors (GEFs), LARG and GEF-H1, as key molecules that regulate the cellular adaptation to force. We show that stimulation of integrins with tensional force triggers activation of these two GEFs and their recruitment to adhesion complexes. Surprisingly, activation of LARG and GEF-H1 involves distinct signalling pathways. Our results reveal that LARG is activated by the Src family tyrosine kinase Fyn, whereas GEF-H1 catalytic activity is enhanced by ERK downstream of a signalling cascade that includes FAK and Ras.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: LARG and GEF-H1 activate RhoA in response to force.
Figure 2: LARG and GEF-H1 mediate cellular stiffening in response to force applied on integrins.
Figure 3: Fyn mediates LARG activation in response to force.
Figure 4: ERK activates GEF-H1 in response to force.


  1. 1

    Hoffman, B. D. & Crocker, J. C. Cell mechanics: dissecting the physical responses of cells to force. Annu. Rev. Biomed. Eng. 11, 259–288 (2009).

    CAS  Article  Google Scholar 

  2. 2

    Wang, N., Butler, J. P. & Ingber, D. E. Mechanotransduction across the cell surface and through the cytoskeleton. Science 260, 1124–1127 (1993).

    CAS  Article  Google Scholar 

  3. 3

    Matthews, B. D., Overby, D. R., Mannix, R. & Ingber, D. E. Cellular adaptation to mechanical stress: role of integrins, Rho, cytoskeletal tension and mechanosensitive ion channels. J. Cell Sci. 119, 508–518 (2006).

    CAS  Article  Google Scholar 

  4. 4

    Choquet, D., Felsenfeld, D. P. & Sheetz, M. P. Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages. Cell 88, 39–48 (1997).

    CAS  Article  Google Scholar 

  5. 5

    Zhao, X. H. et al. Force activates smooth muscle α-actin promoter activity through the Rho signalling pathway. J. Cell Sci. 120, 1801–1809 (2007).

    CAS  Article  Google Scholar 

  6. 6

    Goldyn, A. M., Rioja, B. A., Spatz, J. P., Ballestrem, C. & Kemkemer, R. Force-induced cell polarisation is linked to RhoA-driven microtubule-independent focal-adhesion sliding. J.Cell Sci. 122, 3644–3651 (2009).

    CAS  Article  Google Scholar 

  7. 7

    Bos, J.L., Rehmann, H. & Wittinghofer, A. GEFs and GAPs: critical elements in the control of small G proteins. Cell 129, 865–877 (2007).

    CAS  Article  Google Scholar 

  8. 8

    Sawada, Y. & Sheetz, M. P. Force transduction by Triton cytoskeletons. J. Cell Biol. 156, 609–615 (2002).

    CAS  Article  Google Scholar 

  9. 9

    Pasapera, A. M., Schneider, I. C., Rericha, E., Schlaepfer, D. D. & Waterman, C. M. Myosin II activity regulates vinculin recruitment to focaladhesions through FAK-mediated paxillin phosphorylation. J. Cell Biol. 188, 877–890 (2010).

    CAS  Article  Google Scholar 

  10. 10

    Dubash, A. D. et al. A novel role for Lsc/p115 RhoGEF and LARG in regulating RhoA activity downstream of adhesion to fibronectin. J. Cell Sci. 120, 3989–3998 (2007).

    CAS  Article  Google Scholar 

  11. 11

    Garcia-Mata, R. et al. Analysis of activated GAPs and GEFs in cell lysates. Methods Enzymol. 406, 425–437 (2006).

    CAS  PubMed  Google Scholar 

  12. 12

    DeMali, K. A., Wennerberg, K. & Burridge, K. Integrin signalling to the actin cytoskeleton. Curr. Opin. Cell Biol. 15, 572–582 (2003).

    CAS  Article  Google Scholar 

  13. 13

    Arthur, W. T. & Burridge, K. RhoA inactivation by p190RhoGAP regulates cell spreading and migration by promoting membrane protrusion and polarity. Mol. Biol Cell. 12, 2711–2720 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Lim, Y. et al. PyK2 and FAK connections to p190Rho guanine nucleotide exchange factor regulate RhoA activity, focal adhesion formation, and cell motility. J. Cell Biol. 180, 187–203 (2008).

    CAS  Article  Google Scholar 

  15. 15

    Tim O’Brien, E., Cribb, J., Marshburn, D., Taylor, R. M. 2nd & Superfine, R. Chapter 16: magnetic manipulation for force measurements in cell biology. Methods Cell Biol. 89, 433–450 (2008).

    Article  Google Scholar 

  16. 16

    Bausch, A. R., Moller, W. & Sackmann, E. Measurement of localviscoelasticity and forces in living cells by magnetic tweezers. Biophys J. 76, 573–579 (1999).

    CAS  Article  Google Scholar 

  17. 17

    Thoumine, O. & Ott, A. Time scale dependent viscoelastic and contractile regimes in fibroblasts probed by microplate manipulation. J. Cell Sci. 110, 2109–2116 (1997).

    CAS  PubMed  Google Scholar 

  18. 18

    Na, S., Collin, O. & Chowdhury, F. et al. Rapid signal transduction in living cells is a unique feature of mechanotransduction. Proc. Natl Acad. Sci. USA 105, 6626–6631 (2008).

    CAS  Article  Google Scholar 

  19. 19

    Chikumi, H., Fukuhara, S. & Gutkind, J. S. Regulation of G protein-linked guanine nucleotide exchange factors for Rho, PDZ-RhoGEF, and LARG by tyrosine phosphorylation: evidence of a role for focal adhesion kinase. J. Biol. Chem. 277, 12463–12473 (2002).

    CAS  Article  Google Scholar 

  20. 20

    Kostic, A. & Sheetz, M. P. Fibronectin rigidity response through Fyn and p130Cas recruitment to the leading edge. Mol. Biol. Cell. 17, 2684–2695 (2006).

    CAS  Article  Google Scholar 

  21. 21

    Pelham, R. J. Jr & Wang, Y. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl Acad. Sci. USA 94, 13661–13665 (1997).

    CAS  Article  Google Scholar 

  22. 22

    Mitrossilis, D., Fouchard, J. & Guiroy, A. et al. Single-cell response to stiffness exhibits muscle-like behaviour. Proc. Natl Acad. Sci. USA 106, 18243–18248 (2009).

    CAS  Article  Google Scholar 

  23. 23

    Krendel, M., Zenke, F. T. & Bokoch, G. M. Nucleotide exchange factor GEF-H1 mediates cross-talk between microtubules and the actin cytoskeleton. Nat. Cell Biol. 4, 294–301 (2002).

    CAS  Article  Google Scholar 

  24. 24

    Birkenfeld, J., Nalbant, P., Yoon, S. H. & Bokoch, G. M. Cellular functions of GEF-H1, a microtubule-regulated Rho-GEF: is altered GEF-H1 activity a crucial determinant of disease pathogenesis? Trends Cell Biol. 18, 210–219 (2008).

    CAS  Article  Google Scholar 

  25. 25

    Fujishiro, S. H. et al. ERK phosphorylate GEF-H1 to enhance its guanine nucleotide exchange activity toward RhoA. Biochem. Biophys. Res. Commun. 368, 162–167 (2008).

    CAS  Article  Google Scholar 

  26. 26

    Kakiashvili, E. et al. GEF-H1 mediates tumour necrosis factor-alpha-induced Rho activation and myosin phosphorylation: role in the regulation of tubular paracellular permeability. J. Biol. Chem. 284, 11454–11466 (2009).

    CAS  Article  Google Scholar 

  27. 27

    Schlaepfer, D. D., Hanks, S. K., Hunter, T. & van der Geer, P. Integrin-mediated signal transduction linked to Ras pathway by GRB2 binding to focal adhesion kinase. Nature 372, 786–791 (1994).

    CAS  Article  Google Scholar 

  28. 28

    Lin, T. H., Aplin, A. E. & Shen, Y. et al. Integrin-mediated activation of MAP kinase is independent of FAK: evidence for dual integrin signalling pathways in fibroblasts. J. Cell Biol. 136, 1385–1395 (1997).

    CAS  Article  Google Scholar 

  29. 29

    Frame, M. C., Patel, H., Serrels, B., Lietha, D. & Eck, M. J. The FERM domain: organizing the structure and function of FAK. Nat. Rev. Mol. Cell Biol. 11, 802–814 (2010).

    CAS  Article  Google Scholar 

  30. 30

    Chang, L. & Karin, M. Mammalian MAP kinase signalling cascades. Nature 410, 37–40 (2001).

    CAS  Article  Google Scholar 

  31. 31

    Provenzano, P. P., Inman, D. R., Eliceiri, K. W. & Keely, P. J. Matrix density-induced mechanoregulation of breast cell phenotype, signalling and gene expression through a FAK-ERK linkage. Oncogene 28, 4326–4343 (2009).

    CAS  Article  Google Scholar 

  32. 32

    Paszek, M. J., Zahir, N. & Johnson, K. R. et al. Tensional homeostasis and the malignant phenotype. Cancer Cell. 8, 241–254 (2005).

    CAS  Article  Google Scholar 

  33. 33

    Nalbant, P., Chang, Y. C., Birkenfeld, J., Chang, Z. F. & Bokoch, G. M. Guanine nucleotide exchange factor-H1 regulates cell migration via localized activation of RhoA at the leading edge. Mol. Biol. Cell. 20, 4070–4082 (2009).

    CAS  Article  Google Scholar 

  34. 34

    Riveline, D., Zamir, E. & Balaban, N. Q. et al. Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J. Cell Biol. 153, 1175–1186 (2001).

    CAS  Article  Google Scholar 

  35. 35

    Chrzanowska-Wodnicka, M. & Burridge, K. Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. J. Cell Biol. 133, 1403–1415 (1996).

    CAS  Article  Google Scholar 

  36. 36

    Klemke, R. L. et al. Regulation of cell motility by mitogen-activated protein kinase. J. Cell Biol. 137, 481–492 (1997).

    CAS  Article  Google Scholar 

  37. 37

    Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

    CAS  Article  Google Scholar 

  38. 38

    Ren, X. D. et al. Regulation of the small GTP-binding protein Rho by cell adhesion and the cytoskeleton. EMBO J. 18, 578–585 (1999).

    CAS  Article  Google Scholar 

  39. 39

    Fisher, J. K., Cribb, J. & Desai, K. V. et al. Thin-foil magnetic force system for high-numerical-aperture microscopy. Rev. Sci. Instrum. 77, nihms8302 (2006).

  40. 40

    Mair, L. et al. Size-uniform 200 nm particles: fabrication and application to magnetofection. J. Biomed. Nanotechnol. 5, 182–191 (2009).

    CAS  Article  Google Scholar 

Download references


The authors would like to thank L. Sharek for her technical support. This study was supported by National Institutes of Health Grant nos GM029860 and GM029860-28S (to K.B.), P41-EB002025-23A1 (R.S.) and R01-HL077546-03A2 (R.S.), and a grant from the University Cancer Research Fund from the Lineberger Comprehensive Cancer Center. C.G. is supported by a Marie Curie Outgoing International Fellowship from the European Union Seventh Framework Programme (FP7/2007–2013) under grant agreement no. 254747.

Author information




C.G. and V.S. designed and carried out experiments. R.G.M. and E.T.O. helped with experimental design and procedures. C.G. and K.B. wrote the manuscript. K.B. and R.S. directed the project and revised the manuscript. All authors provided detailed comments.

Corresponding author

Correspondence to Keith Burridge.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 749 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Guilluy, C., Swaminathan, V., Garcia-Mata, R. et al. The Rho GEFs LARG and GEF-H1 regulate the mechanical response to force on integrins. Nat Cell Biol 13, 722–727 (2011).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing