Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Basement membrane sliding and targeted adhesion remodels tissue boundaries during uterine–vulval attachment in Caenorhabditis elegans

This article has been updated

Abstract

Large gaps in basement membrane occur at sites of cell invasion and tissue remodelling in development and cancer. Though never followed directly in vivo, basement membrane dissolution or reduced synthesis have been postulated to create these gaps. Using landmark photobleaching and optical highlighting of laminin and type IV collagen, we find that a new mechanism, basement membrane sliding, underlies basement membrane gap enlargement during uterine–vulval attachment in Caenorhabditis elegans. Laser ablation and mutant analysis reveal that the invaginating vulval cells promote basement membrane movement. Further, an RNA interference and expression screen identifies the integrin INA-1/PAT-3 and VAB-19, homologue of the tumour suppressor Kank, as regulators of basement membrane opening. Both concentrate within vulval cells at the basement membrane gap boundary and halt expansion of the shifting basement membrane. Basement membrane sliding followed by targeted adhesion represents a new mechanism for creating precise basement membrane breaches that can be used by cells to break down compartment boundaries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The gap in the basement membrane expands during uterine–vulval attachment.
Figure 2: The role of the uterine cells during basement membrane gap formation.
Figure 3: The VPCs expand the breach in the basement membrane.
Figure 4: Basement membrane sliding underlies basement membrane gap enlargement.
Figure 5: INA-1/PAT-3 (integrin) and VAB-19 (Kank) stabilize the basement membrane gap boundary.
Figure 6: The uterine and vulval cells act together to limit basement membrane gap expansion.

Similar content being viewed by others

Change history

  • 28 October 2013

    In the version of this Article originally published online, the citation of Nature Protocols at the end of the 'Optical highlighting (photoconversion) of basement membrane components' section in the Methods was incorrect. It has been corrected in all online versions of the Article.

References

  1. Rowe, R. G. & Weiss, S. J. Navigating ECM barriers at the invasive front: the cancer cell–stroma interface. Annu. Rev. Cell Dev. Biol. 25, 567–595 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Sherwood, D. R. Cell invasion through basement membranes: an anchor of understanding. Trends Cell Biol. 16, 250–256 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Kalluri, R. Basement membranes: structure, assembly and role in tumour angiogenesis. Nat. Rev. Cancer 3, 422–433 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Even-Ram, S. & Yamada, K. M. Cell migration in 3D matrix. Curr. Opin. Cell Biol. 17, 524–532 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Rowe, R. G. & Weiss, S. J. Breaching the basement membrane: who, when and how? Trends. Cell Biol. 18, 560–574 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Nourshargh, S., Hordijk, P. L. & Sixt, M. Breaching multiple barriers: leukocyte motility through venular walls and the interstitium. Nat. Rev. Mol. Cell Biol. 11, 366–378 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Nakaya, Y., Sukowati, E. W., Wu, Y. & Sheng, G. RhoA and microtubule dynamics control cell–basement membrane interaction in EMT during gastrulation. Nat. Cell Biol. 10, 765–775 (2008).

    CAS  PubMed  Google Scholar 

  8. Sherwood, D. R. & Sternberg, P. W. Anchor cell invasion into the vulval epithelium in C. elegans. Dev. Cell 5, 21–31 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Srivastava, A., Pastor-Pareja, J. C., Igaki, T., Pagliarini, R. & Xu, T. Basement membrane remodeling is essential for Drosophila disc eversion and tumour invasion. Proc. Natl Acad. Sci. USA 104, 2721–2726 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Barsky, S. H., Siegal, G. P., Jannotta, F. & Liotta, L. A. Loss of basement membrane components by invasive tumours but not by their benign counterparts. Lab. Invest. 49, 140–147 (1983).

    CAS  PubMed  Google Scholar 

  11. Flug, M. & Kopf-Maier, P. The basement membrane and its involvement in carcinoma cell invasion. Acta. Anat. (Basel) 152, 69–84 (1995).

    Article  CAS  Google Scholar 

  12. Frei, J. V. The fine structure of the basement membrane in epidermal tumours. J. Cell Biol. 15, 335–342 (1962).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Matus, D. Q. et al. In vivo identification of regulators of cell invasion across basement membranes. Sci. Signal. 3, ra35 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Spaderna, S. et al. A transient, EMT-linked loss of basement membranes indicates metastasis and poor survival in colorectal cancer. Gastroenterology 131, 830–840 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Cavallo-Medved, D. et al. Live-cell imaging demonstrates extracellular matrix degradation in association with active cathepsin B in caveolae of endothelial cells during tube formation. Exp. Cell Res. 315, 1234–1246 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Garbisa, S., Kniska, K., Tryggvason, K., Foltz, C. & Liotta, L. A. Quantitation of basement membrane collagen degradation by living tumour cells in vitro. Cancer Lett. 9, 359–366 (1980).

    CAS  PubMed  Google Scholar 

  17. Hotary, K., Li, X. Y., Allen, E., Stevens, S. L. & Weiss, S. J. A cancer cell metalloprotease triad regulates the basement membrane transmigration program. Genes Dev. 20, 2673–2686 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Overall, C. M. & Kleifeld, O. Tumour microenvironment—opinion: validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nat. Rev. Cancer 6, 227–239 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Page-McCaw, A., Ewald, A. J. & Werb, Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat. Rev. Mol. Cell Biol. 8, 221–233 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sameni, M., Dosescu, J., Yamada, K. M., Sloane, B. F. & Cavallo-Medved, D. Functional live-cell imaging demonstrates that beta1-integrin promotes type IV collagen degradation by breast and prostate cancer cells. Mol. Imaging 7, 199–213 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Sherwood, D. R., Butler, J. A., Kramer, J. M. & Sternberg, P. W. FOS-1 promotes basement-membrane removal during anchor-cell invasion in C. elegans. Cell 121, 951–962 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Xu, J. et al. Proteolytic exposure of a cryptic site within collagen type IV is required for angiogenesis and tumor growth in vivo. J. Cell Biol. 154, 1069–1079 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liotta, L. A., Rao, N. C., Barsky, S. H. & Bryant, G. The laminin receptor and basement membrane dissolution: role in tumour metastasis. Ciba. Found. Symp. 108, 146–162 (1984).

    CAS  PubMed  Google Scholar 

  24. Newman, A. P. & Sternberg, P. W. Coordinated morphogenesis of epithelia during development of the Caenorhabditis elegans uterine–vulval connection. Proc. Natl Acad. Sci. USA 93, 9329–9333 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ding, M. et al. The cell signalling adaptor protein EPS-8 is essential for C. elegans epidermal elongation and interacts with the ankyrin repeat protein VAB-19. PLoS One 3, e3346 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kakinuma, N., Zhu, Y., Wang, Y., Roy, B. C. & Kiyama, R. Kank proteins: structure, functions and diseases. Cell Mol. Life Sci. 66, 2651–2659 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Newman, A. P., White, J. G. & Sternberg, P. W. Morphogenesis of the C. elegans hermaphrodite uterus. Development 122, 3617–3626 (1996).

    CAS  PubMed  Google Scholar 

  28. Lints, R. & Hall, D. H. Reproductive system, egglaying apparatus. WormAtlas doi:10.3908/wormatlas.1.24 (2010).

  29. Kao, G., Huang, C. C., Hedgecock, E. M., Hall, D. H. & Wadsworth, W. G. The role of the laminin beta subunit in laminin heterotrimer assembly and basement membrane function and development in C. elegans. Dev. Biol. 290, 211–219 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Ziel, J. W., Hagedorn, E. J., Audhya, A. & Sherwood, D. R. UNC-6 (netrin) orients the invasive membrane of the anchor cell in C. elegans. Nat. Cell Biol. 11, 183–189 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Fitzgerald, M. C. & Schwarzbauer, J. E. Importance of the basement membrane protein SPARC for viability and fertility in Caenorhabditis elegans. Curr. Biol. 8, 1285–1288 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Kramer, J. M. Basement membranes. WormBook 1–15 (2005).

  33. Hagedorn, E. J. et al. Integrin acts upstream of netrin signalling to regulate formation of the anchor cell’s invasive membrane in C. elegans. Dev. Cell 17, 187–198 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kimble, J. & Hirsh, D. The postembryonic cell lineages of the hermaphrodite and male gonads in Caenorhabditis elegans. Dev. Biol. 70, 396–417 (1979).

    Article  CAS  PubMed  Google Scholar 

  35. Liu, J., Tzou, P., Hill, R. J. & Sternberg, P. W. Structural requirements for the tissue-specific and tissue-general functions of the Caenorhabditis elegans epidermal growth factor LIN-3. Genetics 153, 1257–1269 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Gurskaya, N. G. et al. Engineering of a monomeric green-to-red photoactivatable fluorescent protein induced by blue light. Nat. Biotechnol. 24, 461–465 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Baum, P. D. & Garriga, G. Neuronal migrations and axon fasciculation are disrupted in ina-1 integrin mutants. Neuron 19, 51–62 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Yurchenco, P. D., Amenta, P. S. & Patton, B. L. Basement membrane assembly, stability and activities observed through a developmental lens. Matrix Biol. 22, 521–538 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Leptin, M., Bogaert, T., Lehmann, R. & Wilcox, M. The function of PS integrins during Drosophila embryogenesis. Cell 56, 401–408 (1989).

    Article  CAS  PubMed  Google Scholar 

  40. Marlin, S. D., Morton, C. C., Anderson, D. C. & Springer, T. A. LFA-1 immunodeficiency disease. Definition of the genetic defect and chromosomal mapping of alpha and beta subunits of the lymphocyte function-associated antigen 1 (LFA-1) by complementation in hybrid cells. J. Exp. Med. 164, 855–867 (1986).

    Article  CAS  PubMed  Google Scholar 

  41. Ding, M., Goncharov, A., Jin, Y. & Chisholm, A. D. C. elegans ankyrin repeat protein VAB-19 is a component of epidermal attachment structures and is essential for epidermal morphogenesis. Development 130, 5791–5801 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Madsen, C. D. & Sahai, E. Cancer dissemination—lessons from leukocytes. Dev. Cell 19, 13–26 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Wolf, K. et al. Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nat. Cell Biol. 9, 893–904 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Altun, Z. F. & Hall, D. H. Muscle system, somatic muscle. WormAtlasdoi:10.3908/wormatlas.1.7, (2009).

  45. Cox, E. A., Tuskey, C. & Hardin, J. Cell adhesion receptors in C. elegans. J. Cell Sci. 117, 1867–1870 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Leardkamolkarn, V. & Abrahamson, D. R. Binding of intravenously injected antibodies against laminin to developing and mature endocrine glands. Cell Tissue Res. 251, 171–181 (1988).

    CAS  PubMed  Google Scholar 

  47. Price, R. G. & Spiro, R. G. Studies on the metabolism of the renal glomerular basement membrane. Turnover measurements in the rat with the use of radiolabelled amino acids. J. Biol. Chem. 252, 8597–8602 (1977).

    CAS  PubMed  Google Scholar 

  48. Trier, J. S., Allan, C. H., Abrahamson, D. R. & Hagen, S. J. Epithelial basement membrane of mouse jejunum. Evidence for laminin turnover along the entire crypt–villus axis. J. Clin. Invest. 86, 87–95 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zamir, E. A., Rongish, B. J. & Little, C. D. The ECM moves during primitive streak formation—computation of ECM versus cellular motion. PLoS Biol. 6 e247 (2008).

  50. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Fraser, A. G. et al. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 408, 325–330 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Rual, J. F. et al. Toward improving Caenorhabditis elegans phenome mapping with an ORFeome-based RNAi library. Genome Res. 14, 2162–2168 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Green, R. A. et al. Expression and imaging of fluorescent proteins in the C. elegans gonad and early embryo. Methods Cell Biol. 85, 179–218 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Hagedorn, E. & Sherwood, D. Optically highlighting basement membrane components C. elegans. Protocol Exchange 10.1038/protex.2011.230 (2011).

Download references

Acknowledgements

We are grateful to A. Chisholm for the vab-19::GFP vector; J. Culotti for the mig-6(ev700)strain; J. Schwarzbauer for the pat-3 HA– β-tail vector; S. Mitani for the deletion mutant (tm1291), S. Johnson of the Duke University LMCF for imaging advice, the Caenorhabditis Genetic Center for strains, and A. Schindler, D. Matus and L. Lilley for comments on the manuscript. This work was supported by a Basil O’Connor Scholars Research Award, The Pew Scholars Program in the Biomedical Sciences and NIH grants GM079320 and GM079320-03S1 to D.R.S., HD027211 to J.M.K. and a JSPS Postdoctoral Fellow for Research Abroad Award to S.I.

Author information

Authors and Affiliations

Authors

Contributions

S.I. carried out most of the experiments. All other authors carried out particular subsets of experiments or developed key reagents. D.R.S. and S.I. designed the project and D.R.S., S.I., E.J.H. and M.A.M. wrote the manuscript.

Corresponding author

Correspondence to David R. Sherwood.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1501 kb)

Supplementary Information

Supplementary Movie 1 (MOV 4626 kb)

Supplementary Information

Supplementary Movie 2 (MOV 4016 kb)

Supplementary Information

Supplementary Movie 3 (MOV 6406 kb)

Supplementary Information

Supplementary Movie 4 (MOV 7824 kb)

Supplementary Information

Supplementary Movie 5 (MOV 2591 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ihara, S., Hagedorn, E., Morrissey, M. et al. Basement membrane sliding and targeted adhesion remodels tissue boundaries during uterine–vulval attachment in Caenorhabditis elegans. Nat Cell Biol 13, 641–651 (2011). https://doi.org/10.1038/ncb2233

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2233

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing