Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

RNF146 is a poly(ADP-ribose)-directed E3 ligase that regulates axin degradation and Wnt signalling

Abstract

The Wnt/β-catenin signalling pathway plays essential roles in embryonic development and adult tissue homeostasis, and deregulation of this pathway has been linked to cancer. Axin is a concentration-limiting component of the β-catenin destruction complex, and its stability is regulated by tankyrase. However, the molecular mechanism by which tankyrase-dependent poly(ADP-ribosyl)ation (PARsylation) is coupled to ubiquitylation and degradation of axin remains undefined. Here, we identify RNF146, a RING-domain E3 ubiquitin ligase, as a positive regulator of Wnt signalling. RNF146 promotes Wnt signalling by mediating tankyrase-dependent degradation of axin. Mechanistically, RNF146 directly interacts with poly(ADP-ribose) through its WWE domain, and promotes degradation of PARsylated proteins. Using proteomics approaches, we have identified BLZF1 and CASC3 as further substrates targeted by tankyrase and RNF146 for degradation. Thus, identification of RNF146 as a PARsylation-directed E3 ligase establishes a molecular paradigm that links tankyrase-dependent PARsylation to ubiquitylation. RNF146-dependent protein degradation may emerge as a major mechanism by which tankyrase exerts its function.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: RNF146 positively regulates Wnt signalling by affecting the protein level of axin.
Figure 2: Interaction between the WWE domain and PAR is essential for RNF146-dependent regulation of axin in vivo.
Figure 3: RNF146 is required for PARsylation-dependent degradation of axin and tankyrase in vivo.
Figure 4: PARsylation-dependent ubiquitylation in vitro.
Figure 5: BLZF1 is identified as a substrate of tankyrase and RNF146 using quantitative mass spectrometry.

References

  1. 1

    Logan, C. Y. & Nusse, R. The Wnt signalling pathway in development and disease. Annu. Rev. Cell Dev. Biol. 20, 781–810 (2004).

    CAS  Article  Google Scholar 

  2. 2

    Clevers, H. Wnt/β-catenin signalling in development and disease. Cell 127, 469–480 (2006).

    CAS  Article  Google Scholar 

  3. 3

    Lee, E., Salic, A., Kruger, R., Heinrich, R. & Kirschner, M. W. The roles of APC and Axin derived from experimental and theoretical analysis of the Wnt pathway. PLoS. Biol. 1, E10 (2003).

    Article  Google Scholar 

  4. 4

    Leung, J. Y. et al. Activation of AXIN2 expression by β-catenin-T cell factor. A feedback repressor pathway regulating Wnt signalling. J. Biol. Chem. 277, 21657–21665 (2002).

    CAS  Article  Google Scholar 

  5. 5

    Willert, K., Shibamoto, S. & Nusse, R. Wnt-induced dephosphorylation of axin releases β-catenin from the axin complex. Genes Dev. 13, 1768–1773 (1999).

    CAS  Article  Google Scholar 

  6. 6

    Huang, S. M. et al. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature 461, 614–620 (2009).

    CAS  Article  Google Scholar 

  7. 7

    Hsiao, S. J. & Smith, S. Tankyrase function at telomeres, spindle poles, and beyond. Biochimie 90, 83–92 (2008).

    CAS  Article  Google Scholar 

  8. 8

    Gagne, J. P., Hendzel, M. J., Droit, A. & Poirier, G. G. The expanding role of poly(ADP-ribose) metabolism: current challenges and new perspectives. Curr. Opin. Cell Biol. 18, 145–151 (2006).

    CAS  Article  Google Scholar 

  9. 9

    Yeh, T. Y. et al. Tankyrase recruitment to the lateral membrane in polarized epithelial cells: regulation by cell–cell contact and protein poly(ADP-ribosyl)ation. Biochem. J. 399, 415–425 (2006).

    CAS  Article  Google Scholar 

  10. 10

    Aravind, L. The WWE domain: a common interaction module in protein ubiquitination and ADP ribosylation. Trends Biochem. Sci. 26, 273–275 (2001).

    CAS  Article  Google Scholar 

  11. 11

    Chen, B. et al. Small molecule-mediated disruption of Wnt-dependent signalling in tissue regeneration and cancer. Nat. Chem. Biol. 5, 100–107 (2009).

    CAS  Article  Google Scholar 

  12. 12

    Sbodio, J. I. & Chi, N. W. Identification of a tankyrase-binding motif sharedby IRAP, TAB182, and human TRF1 but not mouse TRF1. NuMA contains this RXXPDG motif and is a novel tankyrase partner. J. Biol. Chem. 277, 31887–31892 (2002).

    CAS  Article  Google Scholar 

  13. 13

    Short, B. et al. A GRASP55-rab2 effector complex linking Golgi structure to membrane traffic. J. Cell Biol. 155, 877–883 (2001).

    CAS  Article  Google Scholar 

  14. 14

    Chi, N. W. & Lodish, H. F. Tankyrase is a golgi-associated mitogen-activated protein kinase substrate that interacts with IRAP in GLUT4 vesicles. J. Biol. Chem. 275, 38437–38444 (2000).

    CAS  Article  Google Scholar 

  15. 15

    Palacios, I. M., Gatfield, D., St, J. D. & Izaurralde, E. An eIF4AIII-containing complex required for mRNA localization and nonsense-mediated mRNA decay. Nature 427, 753–757 (2004).

    CAS  Article  Google Scholar 

  16. 16

    Hunter, T. The age of crosstalk: phosphorylation, ubiquitination, and beyond. Mol. Cell 28, 730–738 (2007).

    CAS  Article  Google Scholar 

  17. 17

    Min, J. H. et al. Structure of an HIF-1 α-pVHL complex: hydroxyproline recognition in signalling. Science 296, 1886–1889 (2002).

    CAS  Article  Google Scholar 

  18. 18

    Ikura, T. et al. DNA damage-dependent acetylation and ubiquitination of H2AX enhances chromatin dynamics. Mol. Cell Biol. 27, 7028–7040 (2007).

    CAS  Article  Google Scholar 

  19. 19

    Yoshida, Y. et al. E3 ubiquitin ligase that recognizes sugar chains. Nature 418, 438–442 (2002).

    CAS  Article  Google Scholar 

  20. 20

    Schreiber, V., Dantzer, F., Ame, J. C. & de, M. G. Poly(ADP-ribose): novel functions for an old molecule. Nat. Rev. Mol. Cell Biol. 7, 517–528 (2006).

    CAS  Article  Google Scholar 

  21. 21

    Hassa, P. O. & Hottiger, M. O. The diverse biological roles of mammalian PARPS, a small but powerful family of poly-ADP-ribose polymerases. Front. Biosci. 13, 3046–3082 (2008).

    CAS  Article  Google Scholar 

  22. 22

    Scovassi, A. I. The poly(ADP-ribosylation) story: a long route from Cinderella to Princess. Riv. Biol. 100, 351–360 (2007).

    PubMed  Google Scholar 

  23. 23

    Karras, G. I. et al. The macro domain is an ADP-ribose binding module. EMBO J. 24, 1911–1920 (2005).

    CAS  Article  Google Scholar 

  24. 24

    Pleschke, J. M., Kleczkowska, H. E., Strohm, M. & Althaus, F. R. Poly(ADP-ribose) binds to specific domains in DNA damage checkpoint proteins. J. Biol. Chem. 275, 40974–40980 (2000).

    CAS  Article  Google Scholar 

  25. 25

    Ahel, I. et al. Poly(ADP-ribose)-binding zinc finger motifs in DNA repair/checkpoint proteins. Nature 451, 81–85 (2008).

    CAS  Article  Google Scholar 

  26. 26

    Nusse, R., van, O. A., Cox, D., Fung, Y. K. & Varmus, H. Mode of proviral activation of a putative mammary oncogene (int-1) on mouse chromosome 15. Nature 307, 131–136 (1984).

    CAS  Article  Google Scholar 

  27. 27

    Tsukamoto, A. S., Grosschedl, R., Guzman, R. C., Parslow, T. & Varmus, H. E. Expression of the int-1 gene in transgenic mice is associated with mammary gland hyperplasia and adenocarcinomas in male and female mice. Cell 55, 619–625 (1988).

    CAS  Article  Google Scholar 

  28. 28

    Mohinta, S., Wu, H., Chaurasia, P. & Watabe, K. Wnt pathway and breast cancer. Front. Biosci. 12, 4020–4033 (2007).

    CAS  Article  Google Scholar 

  29. 29

    Howe, L. R. & Brown, A. M. Wnt signalling and breast cancer. Cancer Biol. Ther. 3, 36–41 (2004).

    CAS  Article  Google Scholar 

  30. 30

    Gold, B. et al. Genome-wide association study provides evidence for a breast cancer risk locus at 6q22.33. Proc. Natl Acad. Sci. USA 105, 4340–4345 (2008).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank D. Patel, C. Xin, E. McWhinnie, S. Zhao, J. Murphy, Y. Mishina and J. Klekota for technical assistance and W. Shao, F. Stegmeier, J. Tallarico, T. Bouwmeester and M. Kirschner for comments and advice.

Author information

Affiliations

Authors

Contributions

Y.Z., C.M., Y.F., G.A.M., M.S., M.H., A.B., V.E.M, P.M.F., J.A.P., S-M.A.H and F.C. conceived and designed the study. Y.Z., S.L., C.M., Y.F., O.C., G.A.M., M.S., X.S. and F.C. designed and implemented experiments. Y.Z. and F.C. wrote the paper.

Corresponding authors

Correspondence to Shih-Min A. Huang or Feng Cong.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 997 kb)

Supplementary Table 1

Supplementary Information (XLSX 14 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhang, Y., Liu, S., Mickanin, C. et al. RNF146 is a poly(ADP-ribose)-directed E3 ligase that regulates axin degradation and Wnt signalling. Nat Cell Biol 13, 623–629 (2011). https://doi.org/10.1038/ncb2222

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing