Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ciliary transition zone activation of phosphorylated Tctex-1 controls ciliary resorption, S-phase entry and fate of neural progenitors

Abstract

Primary cilia are displayed during the G0/G1 phase of many cell types. Cilia are resorbed as cells prepare to re-enter the cell cycle, but the causal and molecular link between these two cellular events remains unclear. We show that Tctex-1 phosphorylated at Thr 94 is recruited to ciliary transition zones before S-phase entry and has a pivotal role in both ciliary disassembly and cell cycle progression. However, the role of Tctex-1 in S-phase entry is dispensable in non-ciliated cells. Exogenously adding a phospho-mimic Tctex-1T94E mutant accelerates cilium disassembly and S-phase entry. These results support a model in which the cilia act as a brake to prevent cell cycle progression. Mechanistic studies show the involvement of actin dynamics in Tctex-1-regulated cilium resorption. Tctex-1 phosphorylated at Thr 94 is also selectively enriched at the ciliary transition zones of cortical neural progenitors, and has a key role in controlling G1 length, cell cycle entry and fate determination of these cells during corticogenesis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tctex-1 is involved in cilium-dependent cell cycle re-entry.
Figure 2: Temporal activation of phospho(T94)Tctex-1 at the transition zone and its function in ciliary disassembly.
Figure 3: Phospho(T94)Tctex-1 and actin dynamics participate in ciliary resorption.
Figure 4: Phospho(T94)Tctex-1 is expressed at the transition zone of radial glia in the developing neocortex.
Figure 5: Suppression of Tctex-1 in radial glia induced premature neuronal differentiation.
Figure 6: Phosphorylated Tctex-1 is required for cell cycling of radial glia.
Figure 7: Phenotypic characterization of the developing neocortex of AurA and HDAC6 loss-of-function mutants, and Tctex-1 gain-of-function mutants.

Similar content being viewed by others

References

  1. Pan, J. & Snell, W. The primary cilium: keeper of the key to cell division. Cell 129, 1255–1257 (2007).

    Article  CAS  Google Scholar 

  2. Alvarez-Buylla, A., Garcia-Verdugo, J. M. & Tramontin, A. D. A unified hypothesis on the lineage of neural stem cells. Nat. Rev. Neurosci. 2, 287–293 (2001).

    Article  CAS  Google Scholar 

  3. Takahashi, T., Nowakowski, R. S. & Caviness, V. S., Jr . The cell cycle of the pseudostratified ventricular epithelium of the embryonic murine cerebral wall. J. Neurosci. 15, 6046–6057 (1995).

    Article  CAS  Google Scholar 

  4. Lange, C., Huttner, W. B. & Calegari, F. Cdk4/cyclinD1 overexpression in neural stem cells shortens G1, delays neurogenesis, and promotes the generation and expansion of basal progenitors. Cell Stem Cell 5, 320–331 (2009).

    Article  CAS  Google Scholar 

  5. Pilaz, L. J. et al. Forced G1-phase reduction alters mode of division, neuron number, and laminar phenotype in the cerebral cortex. Proc. Natl Acad. Sci. USA 106, 21924–21929 (2009).

    Article  CAS  Google Scholar 

  6. Calegari, F. & Huttner, W. B. An inhibition of cyclin-dependent kinases that lengthens, but does not arrest, neuroepithelial cell cycle induces premature neurogenesis. J. Cell Sci. 116, 4947–4955 (2003).

    Article  CAS  Google Scholar 

  7. Pfister, K. K. et al. Cytoplasmic dynein nomenclature. J. Cell Biol. 171, 411–413 (2005).

    Article  CAS  Google Scholar 

  8. King, S. M. et al. The mouse t-complex-encoded protein Tctex-1 is a light chain of brain cytoplasmic dynein. J. Biol. Chem. 271, 32281–32287 (1996).

    Article  CAS  Google Scholar 

  9. Chuang, J. Z. et al. The dynein light chain Tctex-1 has a dynein-independent role in actin remodeling during neurite outgrowth. Dev. Cell 9, 75–86 (2005).

    Article  CAS  Google Scholar 

  10. Dedesma, C., Chuang, J. Z., Alfinito, P. D. & Sung, C. H. Dynein light chain Tctex-1 identifies neural progenitors in adult brain. J. Comp. Neurol. 496, 773–786 (2006).

    Article  CAS  Google Scholar 

  11. Pugacheva, E. N., Jablonski, S. A., Hartman, T. R., Henske, E. P. & Golemis, E. A. HEF1-dependent Aurora A activation induces disassembly of the primary cilium. Cell 129, 1351–1363 (2007).

    Article  CAS  Google Scholar 

  12. Mittnacht, S. Control of pRB phosphorylation. Curr. Opin. Genet. Dev. 8, 21–27 (1998).

    Article  CAS  Google Scholar 

  13. Follit, J. A., Tuft, R. A., Fogarty, K. E. & Pazour, G. J. The intraflagellar transport protein IFT20 is associated with the Golgi complex and is required for cilia assembly. Mol. Biol. Cell 17, 3781–3792 (2006).

    Article  CAS  Google Scholar 

  14. Jia, J. et al. Suppressor of Fused inhibits mammalian Hedgehog signaling in the absence of cilia. Dev. Biol. 330, 452–460 (2009).

    Article  CAS  Google Scholar 

  15. Murcia, N. S. et al. The Oak Ridge Polycystic Kidney (orpk) disease gene is required for left–right axis determination. Development 127, 2347–2355 (2000).

    CAS  PubMed  Google Scholar 

  16. Tucker, R. W., Pardee, A. B. & Fujiwara, K. Centriole ciliation is related to quiescence and DNA synthesis in 3T3 cells. Cell 17, 527–535 (1979).

    Article  CAS  Google Scholar 

  17. Schneider, L. et al. PDGFRαα signaling is regulated through the primary cilium in fibroblasts. Curr. Biol. 15, 1861–1866 (2005).

    Article  CAS  Google Scholar 

  18. Matsushita, M. et al. A high-efficiency protein transduction system demonstrating the role of PKA in long-lasting long-term potentiation. J. Neurosci. 21, 6000–6007 (2001).

    Article  CAS  Google Scholar 

  19. Dehay, C. & Kennedy, H. Cell-cycle control and cortical development. Nat. Rev. Neurosci. 8, 438–450 (2007).

    Article  CAS  Google Scholar 

  20. Gotz, M. & Huttner, W. B. The cell biology of neurogenesis. Nat. Rev. Mol. Cell Biol. 6, 777–788 (2005).

    Article  Google Scholar 

  21. Kriegstein, A. R. & Noctor, S. C. Patterns of neuronal migration in the embryonic cortex. Trends Neurosci. 27, 392–399 (2004).

    Article  CAS  Google Scholar 

  22. Shu, T. et al. Ndel1 operates in a common pathway with LIS1 and cytoplasmic dynein to regulate cortical neuronal positioning. Neuron 44, 263–277 (2004).

    Article  CAS  Google Scholar 

  23. Konno, D. et al. Neuroepithelial progenitors undergo LGN-dependent planar divisions to maintain self-renewability during mammalian neurogenesis. Nat. Cell Biol. 10, 93–101 (2008).

    Article  CAS  Google Scholar 

  24. Morin, X., Jaouen, F. & Durbec, P. Control of planar divisions by the G-protein regulator LGN maintains progenitors in the chick neuroepithelium. Nat. Neurosci. 10, 1440–1448 (2007).

    Article  CAS  Google Scholar 

  25. Chenn, A. & Walsh, C. A. Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science 297, 365–369 (2002).

    Article  CAS  Google Scholar 

  26. Davenport, J. R. & Yoder, B. K. An incredible decade for the primary cilium: a look at a once-forgotten organelle. Am. J. Physiol. Renal Physiol. 289, F1159–1169 (2005).

    Article  CAS  Google Scholar 

  27. Mahjoub, M. R., Qasim Rasi, M. & Quarmby, L. M. A NIMA-related kinase, Fa2p, localizes to a novel site in the proximal cilia of Chlamydomonas and mouse kidney cells. Mol. Biol. Cell 15, 5172–5186 (2004).

    Article  CAS  Google Scholar 

  28. Qin, H., Wang, Z., Diener, D. & Rosenbaum, J. Intraflagellar transport protein 27 is a small G protein involved in cell-cycle control. Curr. Biol. 17, 193–202 (2007).

    Article  CAS  Google Scholar 

  29. Seeley, E. S., Carriere, C., Goetze, T., Longnecker, D. S. & Korc, M. Pancreatic cancer and precursor pancreatic intraepithelial neoplasia lesions are devoid of primary cilia. Cancer Res. 69, 422–430 (2009).

    Article  CAS  Google Scholar 

  30. Fish, J. L., Kosodo, Y., Enard, W., Paabo, S. & Huttner, W. B. Aspm specifically maintains symmetric proliferative divisions of neuroepithelial cells. Proc. Natl Acad. Sci. USA 103, 10438–10443 (2006).

    Article  CAS  Google Scholar 

  31. Higginbotham, H. R. & Gleeson, J. G. The centrosome in neuronal development. Trends Neurosci. 30, 276–283 (2007).

    Article  CAS  Google Scholar 

  32. Zhong, X., Pfeifer, G. P. & Xu, X. Microcephalin encodes a centrosomal protein. Cell Cycle 5, 457–458 (2006).

    Article  CAS  Google Scholar 

  33. Bond, J. & Woods, C. G. Cytoskeletal genes regulating brain size. Curr. Opin. Cell Biol. 18, 95–101 (2006).

    Article  CAS  Google Scholar 

  34. Chizhikov, V. V. et al. Cilia proteins control cerebellar morphogenesis by promoting expansion of the granule progenitor pool. J. Neurosci. 27, 9780–9789 (2007).

    Article  CAS  Google Scholar 

  35. Spassky, N. et al. Primary cilia are required for cerebellar development and Shh-dependent expansion of progenitor pool. Dev. Biol. 317, 246–259 (2008).

    Article  CAS  Google Scholar 

  36. Han, Y. G. et al. Hedgehog signaling and primary cilia are required for the formation of adult neural stem cells. Nat. Neurosci. 11, 277–284 (2008).

    Article  CAS  Google Scholar 

  37. Lai, K., Kaspar, B. K., Gage, F. H. & Schaffer, D. V. Sonic hedgehog regulates adult neural progenitor proliferation in vitro and in vivo. Nat. Neurosci. 6, 21–27 (2003).

    Article  CAS  Google Scholar 

  38. Chenn, A. & McConnell, S. K. Cleavage orientation and the asymmetric inheritance of Notch1 immunoreactivity in mammalian neurogenesis. Cell 82, 631–641 (1995).

    Article  CAS  Google Scholar 

  39. Gauthier-Fisher, A. et al. Lfc and Tctex-1 regulate the genesis of neurons from cortical precursor cells. Nat. Neurosci. 12, 735–744 (2009).

    Article  CAS  Google Scholar 

  40. Kim, J. et al. Functional genomic screen for modulators of ciliogenesis and cilium length. Nature 464, 1048–1051 (2010).

    Article  CAS  Google Scholar 

  41. Doxsey, S., Zimmerman, W. & Mikule, K. Centrosome control of the cell cycle. Trends Cell Biol. 15, 303–311 (2005).

    Article  CAS  Google Scholar 

  42. Caspary, T., Larkins, C. E. & Anderson, K. V. The graded response to Sonic Hedgehog depends on cilia architecture. Dev. Cell 12, 767–778 (2007).

    Article  CAS  Google Scholar 

  43. Takeuchi, A. & O'Leary, D. D. Radial migration of superficial layer cortical neurons controlled by novel Ig cell adhesion molecule MDGA1. J. Neurosci. 26, 4460–4464 (2006).

    Article  CAS  Google Scholar 

  44. Thomas, M. et al. Full deacylation of polyethylenimine dramatically boosts its gene delivery efficiency and specificity to mouse lung. Proc. Natl Acad. Sci. USA 102, 5679–5684 (2005).

    Article  CAS  Google Scholar 

  45. Tabata, H. & Nakajima, K. Efficient in utero gene transfer system to the developing mouse brain using electroporation: visualization of neuronal migration in the developing cortex. Neuroscience 103, 865–872 (2001).

    Article  CAS  Google Scholar 

  46. Sanada, K. & Tsai, L. H. G protein βγ subunits and AGS3 control spindle orientation and asymmetric cell fate of cerebral cortical progenitors. Cell 122, 119–131 (2005).

    Article  CAS  Google Scholar 

  47. Xia, X. G. et al. An enhanced U6 promoter for synthesis of short hairpin RNA. Nucleic Acids Res. 31, e100 (2003).

    Article  Google Scholar 

  48. Feng, L., Hatten, M. E. & Heintz, N. Brain lipid-binding protein (BLBP): a novel signaling system in the developing mammalian CNS. Neuron 12, 895–908 (1994).

    Article  CAS  Google Scholar 

  49. Hevner, R. F. et al. Tbr1 regulates differentiation of the preplate and layer 6. Neuron 29, 353–366 (2001).

    Article  CAS  Google Scholar 

  50. Tai, A. W., Chuang, J.-Z. & Sung, C.-H. Localization of Tctex-1, a cytoplasmic dynein light chain, to the Golgi apparatus and evidence for dynein complex heterogeneity. J. Biol. Chem. 273, 19639–19649 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are indebted to the following grant support: Tri-Institutional Starr Foundation, NYSTEM, NIH (EY11307, EY016805), RPB (to C-H.S.), Tohoku University (to M.S.), New Energy and Industrial Technology Development Organization, and Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, and Culture of Japan (to K.T.). We thank G. Pazour, K. Anderson, R. Hevner, Y. Shi, N. Heintz, C. Cepko, A. Liu and S. Doxsey for reagents, and S. Anderson, M. E. Ross, D. Cobrinik and B. Tsou for discussion.

Author information

Authors and Affiliations

Authors

Contributions

A.L., J-Z.C. and C-H.S designed the overall study. A.L. and C.D. performed IUE experiments and phenotype characterization. J-Z. C. generated all constructs. A. L., Y-Y.T. and M.S. performed cell culture studies. K.T. generated the anti-phospho(T94)Tctex-1 antibody. K.T. and T.K. generated 9R peptides. A.L., J-Z.C. and C-H.S. wrote the paper.

Corresponding author

Correspondence to Ching-Hwa Sung.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1821 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, A., Saito, M., Chuang, JZ. et al. Ciliary transition zone activation of phosphorylated Tctex-1 controls ciliary resorption, S-phase entry and fate of neural progenitors. Nat Cell Biol 13, 402–411 (2011). https://doi.org/10.1038/ncb2218

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2218

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing