Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cdk5-mediated phosphorylation of endophilin B1 is required for induced autophagy in models of Parkinson's disease

An Erratum to this article was published on 01 June 2011

This article has been updated

Abstract

Cyclin-dependent kinase 5 (Cdk5) is a serine/threonine kinase that is increasingly implicated in various neurodegenerative diseases. Deregulated Cdk5 activity has been associated with neuronal death, but the underlying mechanisms are not well understood. Here we report an unexpected role for Cdk5 in the regulation of induced autophagy in neurons. We have identified endophilin B1 (EndoB1) as a Cdk5 substrate, and show that Cdk5-mediated phosphorylation of EndoB1 is required for autophagy induction in starved neurons. Furthermore, phosphorylation of EndoB1 facilitates EndoB1 dimerization and recruitment of UVRAG (UV radiation resistance-associated gene). More importantly, Cdk5-mediated phosphorylation of EndoB1 is essential for autophagy induction and neuronal loss in models of Parkinson’s disease. Our findings not only establish Cdk5 as a critical regulator of autophagy induction, but also reveal a role for Cdk5 and EndoB1 in the pathophysiology of Parkinson’s disease through modulating autophagy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: EndoB1 is a substrate of Cdk5/p35.
Figure 2: Cdk5-mediated phosphorylation of EndoB1 is required for starvation-induced autophagy in neurons.
Figure 3: Thr 145 phosphorylation of EndoB1 does not affect its lipid binding and co-localization with Atg5.
Figure 4: Cdk5-mediated Thr 145 phosphorylation of EndoB1 regulates its dimerization and interaction with UVRAG/Beclin 1.
Figure 5: Cdk5-mediated Thr 145 phosphorylation of EndoB1 is involved in autophagy triggered by MPTP.
Figure 6: Thr 145 phosphorylation of EndoB1 by Cdk5 contributes to α-synucleinA53T mutant-induced autophagy.
Figure 7: Cdk5-mediated Thr 145 phosphorylation of EndoB1 is required for MPP+- and α-synucleinA53T mutant-induced neuronal death.
Figure 8: Proposed model for the role of Cdk5 and EndoB1 in induced autophagy and neuronal death.

Similar content being viewed by others

Change history

  • 21 April 2011

    In the version of this article initially published online and in print, there were some errors in Fig. 3b. These errors have been corrected in the HTML and PDF versions of the article.

References

  1. Dhavan, R. & Tsai, L. H. A decade of CDK5. Nat. Rev. Mol. Cell Biol. 2, 749–759 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Cheung, Z. H., Fu, A. K. & Ip, N. Y. Synaptic roles of Cdk5: implications in higher cognitive functions and neurodegenerative diseases. Neuron 50, 13–18 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Cheung, Z. H. & Ip, N. Y. Cdk5: mediator of neuronal death and survival. Neurosci. Lett. 361, 47–51 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Cheung, Z. H., Gong, K. & Ip, N. Y. Cyclin-dependent kinase 5 supports neuronal survival through phosphorylation of Bcl-2. J. Neurosci. 28, 4872–4877 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li, B. S. et al. Cyclin-dependent kinase 5 prevents neuronal apoptosis by negative regulation of c-Jun N-terminal kinase 3. EMBO J. 21, 324–333 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. O’Hare, M. J. et al. Differential roles of nuclear and cytoplasmic cyclin-dependent kinase 5 in apoptotic and excitotoxic neuronal death. J. Neurosci. 25, 8954–8966 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Smith, P. D. et al. Cyclin-dependent kinase 5 is a mediator of dopaminergic neuron loss in a mouse model of Parkinson’s disease. Proc. Natl Acad. Sci. USA 100, 13650–13655 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Patrick, G. N. et al. Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature 402, 615–622 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Smith, P. D. et al. Calpain-regulated p35/cdk5 plays a central role in dopaminergic neuron death through modulation of the transcription factor myocyte enhancer factor 2. J. Neurosci. 26, 440–447 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Paoletti, P. et al. Dopaminergic and glutamatergic signalling crosstalk in Huntington’s disease neurodegeneration: the role of p25/cyclin-dependent kinase 5. J. Neurosci. 28, 10090–10101 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dauer, W. & Przedborski, S. Parkinson’s disease: mechanisms and models. Neuron 39, 889–909 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Levy, O. A., Malagelada, C. & Greene, L. A. Cell death pathways in Parkinson’s disease: proximal triggers, distal effectors, and final steps. Apoptosis 14, 478–500 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Qu, D. et al. Role of Cdk5-mediated phosphorylation of Prx2 in MPTP toxicity and Parkinson’s disease. Neuron 55, 37–52 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Huang, E. et al. The role of Cdk5-mediated apurinic/apyrimidinic endonuclease 1 phosphorylation in neuronal death. Nat. Cell Biol. 12, 563–571 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Rubinsztein, D. C. The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 443, 780–786 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Maiuri, M. C., Zalckvar, E., Kimchi, A. & Kroemer, G. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat. Rev. Mol. Cell Biol. 8, 741–752 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Zhu, J. H., Guo, F., Shelburne, J., Watkins, S. & Chu, C. T. Localization of phosphorylated ERK/MAP kinases to mitochondria and autophagosomes in Lewy body diseases. Brain Pathol. 13, 473–481 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Anglade, P. et al. Apoptosis and autophagy in nigral neurons of patients with Parkinson’s disease. Histol. Histopathol. 12, 25–31 (1997).

    CAS  PubMed  Google Scholar 

  19. Zhu, J. H. et al. Regulation of autophagy by extracellular signal-regulated protein kinases during 1-methyl-4-phenylpyridinium-induced cell death. Am. J. Pathol. 170, 75–86 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stefanis, L., Larsen, K. E., Rideout, H. J., Sulzer, D. & Greene, L. A. Expression of A53T mutant but not wild-type α-synuclein in PC12 cells induces alterations of the ubiquitin-dependent degradation system, loss of dopamine release, and autophagic cell death. J. Neurosci. 21, 9549–9560 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xilouri, M., Vogiatzi, T., Vekrellis, K., Park, D. & Stefanis, L. Aberrant α-synuclein confers toxicity to neurons in part through inhibition of chaperone-mediated autophagy. PloS One 4, e5515 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Cheung, Z. H. & Ip, N. Y. The emerging role of autophagy in Parkinson’s disease. Mol. Brain 2, 29 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cuervo, A. M., Stefanis, L., Fredenburg, R., Lansbury, P. T. & Sulzer, D. Impaired degradation of mutant α-synuclein by chaperone-mediated autophagy. Science 305, 1292–1295 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Vogiatzi, T., Xilouri, M., Vekrellis, K. & Stefanis, L. Wild type α-synuclein is degraded by chaperone-mediated autophagy and macroautophagy in neuronal cells. J. Biol. Chem. 283, 23542–23556 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hara, T. et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441, 885–889 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Komatsu, M. et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441, 880–884 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Ravikumar, B. et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat. Genet. 36, 585–595 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Levine, B. & Kroemer, G. Autophagy in the pathogenesis of disease. Cell 132, 27–42 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yang, Q. et al. Regulation of neuronal survival factor MEF2D by chaperone-mediated autophagy. Science 323, 124–127 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Takahashi, Y. et al. Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumourigenesis. Nat. Cell Biol. 9, 1142–1151 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Modregger, J., Schmidt, A. A., Ritter, B., Huttner, W. B. & Plomann, M. Characterization of endophilin B1b, a brain-specific membrane-associated lysophosphatidic acid acyl transferase with properties distinct from endophilin A1. J. Biol. Chem. 278, 4160–4167 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Farsad, K. et al. Generation of high curvature membranes mediated by direct endophilin bilayer interactions. J. Cell Biol. 155, 193–200 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cuddeback, S. M. et al. Molecular cloning and characterization of Bif-1. A novel Src homology 3 domain-containing protein that associates with Bax. J. Biol. Chem. 276, 20559–20565 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Gallop, J. L. et al. Mechanism of endophilin N-BAR domain-mediated membrane curvature. EMBO J. 25, 2898–2910 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Klionsky, D. J. et al. Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 4, 151–175 (2008).

    CAS  PubMed  Google Scholar 

  36. Mizushima, N., Yoshimori, T. & Levine, B. Methods in mammalian autophagy research. Cell 140, 313–326 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Huttner, W. B. & Schmidt, A. A. Membrane curvature: a case of endofeelin. Trends Cell Biol. 12, 155–158 (2002).

    CAS  PubMed  Google Scholar 

  38. Liang, C. et al. Beclin1-binding UVRAG targets the class C Vps complex to coordinate autophagosome maturation and endocytic trafficking. Nat. Cell Biol. 10, 776–787 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liang, C. et al. Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nat. Cell Biol. 8, 688–699 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Martin, L. J. et al. Parkinson’s disease α-synuclein transgenic mice develop neuronal mitochondrial degeneration and cell death. J. Neurosci. 26, 41–50 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Giasson, B. I. et al. Neuronal α-synucleinopathy with severe movement disorder in mice expressing A53T human α-synuclein. Neuron 34, 521–533 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Mizushima, N., Levine, B., Cuervo, A. M. & Klionsky, D. J. Autophagy fights disease through cellular self-digestion. Nature 451, 1069–1075 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schmelzle, T. & Hall, M. N. TOR, a central controller of cell growth. Cell 103, 253–262 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Bredesen, D. E., Rao, R. V. & Mehlen, P. Cell death in the nervous system. Nature 443, 796–802 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wan, J. et al. Endophilin B1 as a novel regulator of nerve growth factor/ TrkA trafficking and neurite outgrowth. J. Neurosci. 28, 9002–9012 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. McPhee, C. K., Logan, M. A., Freeman, M. R. & Baehrecke, E. H. Activation of autophagy during cell death requires the engulfment receptor Draper. Nature 465, 1093–1096 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shibata, M. et al. Regulation of intracellular accumulation of mutant Huntingtin by Beclin 1. J. Biol. Chem. 281, 14474–14485 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Fu, W. Y. et al. Cdk5 regulates EphA4-mediated dendritic spine retraction through an ephexin1-dependent mechanism. Nat. Neurosci. 10, 67–76 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Cheung, Z. H., Chin, W. H., Chen, Y., Ng, Y. P. & Ip, N. Y. Cdk5 is involved in BDNF-stimulated dendritic growth in hippocampal neurons. PLoS Biol. 5, e63 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Lee, J. A. & Gao, F. B. Inhibition of autophagy induction delays neuronal cell loss caused by dysfunctional ESCRT-III in frontotemporal dementia. J. Neurosci. 29, 8506–8511 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cheng, K. et al. Pctaire1 interacts with p35 and is a novel substrate for Cdk5/p35. J. Biol. Chem. 277, 31988–31993 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Lai, K. O. et al. Identification of the Jak/Stat proteins as novel downstream targets of EphA4 signalling in muscle: implications in the regulation of acetylcholinesterase expression. J. Biol. Chem. 279, 13383–13392 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Jin, W. et al. Lipid binding regulates synaptic targeting of PICK1, AMPA receptor trafficking, and synaptic plasticity. J. Neurosci. 26, 2380–2390 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to A. B. Kulkarni (National Institutes of Health, USA) and T. Curran (St Jude Children’s Research Hospital, USA) for the Cdk5-knockout mice. p35-knockout mice were provided by L. H. Tsai (Massachusetts Institute of Technology, USA). We thank T. Yoshimori (Osaka University, Japan) for the mRFP–LC3 construct, V. M. Y. Lee (University of Pennsylvania School of Medicine, USA) for the SNL-1 antibody and wild-type α-synuclein and α-synucleinA53T constructs and J. Yuan (Harvard Medical School) for the pcDNA3-Beclin 1 construct. We thank J. Li, G. Ke, W. Y. Fu, K. Cheng, J. Wan, Y. P. Ng, V. Lee and A. Lai for technical assistance, and members of the Ip laboratory for discussions. This work was supported in part by the Research Grants Council of Hong Kong (HKUST 661007, 661109, 660309, 660210, 1/06C and 6/CRF/08), the Area of Excellence Scheme of the University Grants Committee (AoE/B-15/01) and the Hong Kong Jockey Club. N.Y.I. and Z.H.C. were recipients of the Croucher Foundation Senior Research Fellowship and Croucher Foundation Fellowship, respectively.

Author information

Authors and Affiliations

Authors

Contributions

A.S.L.W., R.H.K.L., A.Y.C. and P.K.Y. carried out the experiments. A.S.L.W., R.H.K.L., A.Y.C., P.K.Y., Z.H.C. and N.Y.I. planned the studies, designed the experiments and interpreted the results. S.K.C., Z.H.C. and N.Y.I. provided reagents and resources. A.S.L.W., Z.H.C. and N.Y.I. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Zelda H. Cheung or Nancy Y. Ip.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1530 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, A., Lee, R., Cheung, A. et al. Cdk5-mediated phosphorylation of endophilin B1 is required for induced autophagy in models of Parkinson's disease. Nat Cell Biol 13, 568–579 (2011). https://doi.org/10.1038/ncb2217

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2217

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing