Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Auxin triggers a genetic switch

Abstract

Cell specification in development requires robust gene-regulatory responses to transient signals. In plants, the small signalling molecule auxin has been implicated in diverse developmental processes1,2. Auxin promotes the degradation of AUXIN/INDOLE-3-ACETIC ACID (AUX/IAA) inhibitors that prevent AUXIN RESPONSE FACTOR (ARF) transcription factors from regulating their target genes1,3. However, the precise role of auxin in patterning has remained unclear, the view of auxin acting as a morphogen is controversial4,5 and the transcriptional control of the ARF genes themselves is barely explored6. Here, we demonstrate by experimental and computational analyses that the Arabidopsis ARF protein MONOPTEROS (MP) controls its own expression and the expression of its AUX/IAA inhibitor BODENLOS (BDL), with auxin acting as a threshold-specific trigger by promoting the degradation of the inhibitor. Our results suggest a general mechanism for how the transient accumulation of auxin activates self-sustaining or hysteretic feedback systems of interacting auxin-response proteins that, similarly to other genetic switches, result in unequivocal developmental responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Regulation of BDL and MP expression by auxin (1-naphthylacetic acid, NAA), MP and BDL.
Figure 2: Auxin-regulated MP expression in planta.
Figure 3: MP–BDL regulatory circuitry.
Figure 4: Gene activation by MP.

Similar content being viewed by others

References

  1. Lau, S., Jürgens, G. & De Smet, I. The evolving complexity of the auxin pathway. Plant Cell 20, 1738–1746 (2008).

    Article  CAS  Google Scholar 

  2. Vanneste, S. & Friml, J. Auxin: a trigger for change in plant development. Cell 136, 1005–1016 (2009).

    Article  CAS  Google Scholar 

  3. Chapman, E. J. & Estelle, M. Mechanism of auxin-regulated gene expression in plants. Annu. Rev. Genet. 43, 265–285 (2009).

    Article  CAS  Google Scholar 

  4. Bhalerao, R. P. & Bennett, M. J. The case for morphogens in plants. Nat. Cell Biol. 5, 939–943 (2003).

    Article  CAS  Google Scholar 

  5. Möller, B. & Weijers, D. Auxin control of embryo patterning. Cold Spring Harb. Perspect. Biol. 1, a001545 (2009).

    Article  Google Scholar 

  6. Bowman, J. L. & Floyd, S. K. Patterning and polarity in seed plant shoots. Annu. Rev. Plant Biol. 59, 67–88 (2008).

    Article  CAS  Google Scholar 

  7. Kauffman, S. Control circuits for determination and transdetermination: interpreting positional information in a binary epigenetic code. Ciba Found. Symp. 0, 201–221 (1975).

    CAS  PubMed  Google Scholar 

  8. Meinhardt, H. Morphogenesis of lines and nets. Differentiation 6, 117–123 (1976).

    Article  CAS  Google Scholar 

  9. Meinhardt, H. Models of Biological Pattern Formation (Academic, 1982).

    Google Scholar 

  10. Levine, M. & Davidson, E. H. Gene regulatory networks for development. Proc. Natl Acad. Sci. USA 102, 4936–4942 (2005).

    Article  CAS  Google Scholar 

  11. Alon, U. Network motifs: theory and experimental approaches. Nat. Rev. Genet. 8, 450–461 (2007).

    Article  CAS  Google Scholar 

  12. De Smet, I., Lau, S., Mayer, U. & Jürgens, G. Embryogenesis—the humble beginnings of plant life. Plant J. 61, 959–970 (2010).

    Article  CAS  Google Scholar 

  13. Dharmasiri, N. et al. Plant development is regulated by a family of auxin receptor F box proteins. Dev. Cell 9, 109–119 (2005).

    Article  CAS  Google Scholar 

  14. Weijers, D. et al. Developmental specificity of auxin response by pairs of ARF and Aux/IAA transcriptional regulators. EMBO J. 24, 1874–1885 (2005).

    Article  CAS  Google Scholar 

  15. Hamann, T., Benková, E., Bäurle, I., Kientz, M. & Jürgens, G. The Arabidopsis BODENLOS gene encodes an auxin response protein inhibiting MONOPTEROS-mediated embryo patterning. Genes Dev. 16, 1610–1615 (2002).

    Article  CAS  Google Scholar 

  16. Hamann, T., Mayer, U. & Jürgens, G. The auxin-insensitive bodenlos mutation affects primary root formation and apical–basal patterning in the Arabidopsis embryo. Development 126, 1387–1395 (1999).

    CAS  PubMed  Google Scholar 

  17. Berleth, T. & Jürgens, G. The role of the monopteros gene in organising the basal body region of the Arabidopsis embryo. Development 118, 575–587 (1993).

    Google Scholar 

  18. Schlereth, A. et al. MONOPTEROS controls embryonic root initiation by regulating a mobile transcription factor. Nature 464, 913–916 (2010).

    Article  CAS  Google Scholar 

  19. Weijers, D. et al. Auxin triggers transient local signalling for cell specification in Arabidopsis embryogenesis. Dev. Cell 10, 265–270 (2006).

    Article  CAS  Google Scholar 

  20. Sheen, J. Signal transduction in maize and Arabidopsis mesophyll protoplasts. Plant Physiol. 127, 1466–1475 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Abel, S., Nguyen, M. D. & Theologis, A. The PS-IAA4/5-like family of early auxin-inducible mRNAs in Arabidopsis thaliana. J. Mol. Biol. 251, 533–549 (1995).

    Article  CAS  Google Scholar 

  22. Tian, Q., Uhlir, N. J. & Reed, J. W. Arabidopsis SHY2/IAA3 inhibits auxin-regulated gene expression. Plant Cell 14, 301–319 (2002).

    Article  CAS  Google Scholar 

  23. Ulmasov, T., Hagen, G. & Guilfoyle, T. J. ARF1, a transcription factor that binds to auxin response elements. Science 276, 1865–1868 (1997).

    Article  CAS  Google Scholar 

  24. Ulmasov, T., Hagen, G. & Guilfoyle, T. J. Dimerization and DNA binding of auxin response factors. Plant J. 19, 309–319 (1999).

    Article  CAS  Google Scholar 

  25. Ulmasov, T., Murfett, J., Hagen, G. & Guilfoyle, T. J. Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9, 1963–1971 (1997).

    Article  CAS  Google Scholar 

  26. Friml, J. et al. Efflux-dependent auxin gradients establish the apical–basal axis of Arabidopsis. Nature 426, 147–153 (2003).

    Article  CAS  Google Scholar 

  27. Harmer, S. L. The circadian system in higher plants. Annu. Rev. Plant Biol. 60, 357–377 (2009).

    Article  CAS  Google Scholar 

  28. Hubbard, K. E., Robertson, F. C., Dalchau, N. & Webb, A. A. Systems analyses of circadian networks. Mol. Biosyst. 5, 1502–1511 (2009).

    Article  CAS  Google Scholar 

  29. Cole, M. F. & Young, R. A. Mapping key features of transcriptional regulatory circuitry in embryonic stem cells. Cold Spring Harb. Symp. Quant. Biol. 73, 183–193 (2008).

    Article  CAS  Google Scholar 

  30. Mayer, U., Büttner, G. & Jürgens, G. Apical–basal pattern formation in the Arabidopsis embryo: studies on the role of the gnom gene. Development 117, 149–162 (1993).

    Google Scholar 

  31. De Smet, I. et al. Bimodular auxin response controls organogenesis in Arabidopsis. Proc. Natl Acad. Sci. USA 107, 2705–2710 (2010).

    Article  CAS  Google Scholar 

  32. Schütze, K., Harter, K. & Chaban, C. Bimolecular fluorescence complementation (BiFC) to study protein–protein interactions in living plant cells. Methods Mol. Biol. 479, 189–202 (2009).

    Article  Google Scholar 

  33. Calderon-Villalobos, L. I. et al. LucTrap vectors are tools to generate luciferase fusions for the quantification of transcript and protein abundance in vivo. Plant Physiol. 141, 3–14 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Schwechheimer, C., Smith, C. & Bevan, M. W. The activities of acidic and glutamine-rich transcriptional activation domains in plant cells: design of modular transcription factors for high-level expression. Plant Mol. Biol. 36, 195–204 (1998).

    Article  CAS  Google Scholar 

  35. Takada, S. & Jürgens, G. Transcriptional regulation of epidermal cell fate in the Arabidopsis embryo. Development 134, 1141–1150 (2007).

    Article  CAS  Google Scholar 

  36. Clough, S. J. & Bent, A. F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743 (1998).

    Article  CAS  Google Scholar 

  37. Sauer, M. & Friml, J. In vitro culture of Arabidopsis embryos. Methods Mol. Biol. 427, 71–76 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Brancato for protoplast transfections, R. Kancheva and E. Özdemir for help with plant work, M. Kientz for help with RNA in situ hybridizations, and D. Weijers and M. Bayer for critical reading of the manuscript. This work was supported by the Max Planck Society, a grant from the Deutsche Forschungsgemeinschaft to G.J. (SFB 446) and long-term postdoctoral fellowships to I.D.S. from the European Molecular Biology Organization (ALTF 108-2006) and the Marie Curie Intra-European Fellowship Scheme (FP6 MEIF-CT-2007–041375).

Author information

Authors and Affiliations

Authors

Contributions

S.L. and G.J. designed the project, S.L., I.D.S., H.M. and M.K. carried out the research, and S.L., I.D.S., H.M. and G.J. wrote the manuscript.

Corresponding author

Correspondence to Gerd Jürgens.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 684 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lau, S., Smet, I., Kolb, M. et al. Auxin triggers a genetic switch. Nat Cell Biol 13, 611–615 (2011). https://doi.org/10.1038/ncb2212

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2212

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing