MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins

A Corrigendum to this article was published on 23 December 2014

This article has been updated


Circulating microRNAs (miRNA) are relatively stable in plasma and are a new class of disease biomarkers. Here we present evidence that high-density lipoprotein (HDL) transports endogenous miRNAs and delivers them to recipient cells with functional targeting capabilities. Cellular export of miRNAs to HDL was demonstrated to be regulated by neutral sphingomyelinase. Reconstituted HDL injected into mice retrieved distinct miRNA profiles from normal and atherogenic models. HDL delivery of both exogenous and endogenous miRNAs resulted in the direct targeting of messenger RNA reporters. Furthermore, HDL-mediated delivery of miRNAs to recipient cells was demonstrated to be dependent on scavenger receptor class B type I. The human HDL–miRNA profile of normal subjects is significantly different from that of familial hypercholesterolemia subjects. Notably, HDL–miRNA from atherosclerotic subjects induced differential gene expression, with significant loss of conserved mRNA targets in cultured hepatocytes. Collectively, these observations indicate that HDL participates in a mechanism of intercellular communication involving the transport and delivery of miRNAs.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: HDL–RNA analysis.
Figure 2: Human HDL carries distinct miRNA signatures in health and disease.
Figure 3: The role of LDL and the LDLR in HDL–miRNA signatures.
Figure 4: HDL readily incorporates with miRNAs in vitro and in vivo.
Figure 5: HDL transfers miRNAs to recipient cells with functional targeting.
Figure 6: HDL–miRNA delivery is SR-BI-dependent.
Figure 7: Atherosclerotic HDL induces differential gene expression through miRNA transfer.

Change history

  • 08 December 2014

    In the version of this Article originally published online, incorrect values appearing in Supplementary Table S4 were used to generate Fig. 3a and to calculate the P and R values. The annotation between Exosome and HDL should have read ‘R = 0.22*’, the annotation between Exosome and LDL should have read ‘R = 0.63**’ and the annotation between HDL and LDL should have read ‘R = 0.54**’, where **P < 0.0001 and *P < 0.001. These errors have been corrected in the online versions of the Article, and in the Supplementary Information.

  • 23 December 2014

    Nat. Cell Biol. 13, 423–433 (2011); published online 20 March 2011; corrected after print 8 December 2014 In the version of this Article originally published online, incorrect values appearing in Supplementary Table S4 were used to generate Fig. 3a and to calculate the P and R values. The annotationbetween Exosome and HDL should have read 'R = 0.


  1. 1

    Simons, M. & Raposo, G. Exosomes–vesicular carriers for intercellular communication. Curr. Opin. Cell Biol. 21, 575–581 (2009).

    CAS  Article  Google Scholar 

  2. 2

    Valadi, H. et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 9, 654–659 (2007).

    CAS  Article  Google Scholar 

  3. 3

    Hunter, M. P. et al. Detection of microRNA expression in human peripheral blood microvesicles. PLoS One 3, e3694 (2008).

    Article  Google Scholar 

  4. 4

    Ratajczak, J., Wysoczynski, M., Hayek, F., Janowska-Wieczorek, A. & Ratajczak, M. Z. Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia 20, 1487–1495 (2006).

    CAS  Article  Google Scholar 

  5. 5

    Selbach, M. et al. Widespread changes in protein synthesis induced by microRNAs. Nature 455, 58–63 (2008).

    CAS  Article  Google Scholar 

  6. 6

    Baek, D. et al. The impact of microRNAs on protein output. Nature 455, 64–71 (2008).

    CAS  Article  Google Scholar 

  7. 7

    Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

    CAS  Article  Google Scholar 

  8. 8

    Mitchell, P. S. et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl Acad. Sci. USA 105, 10513–10518 (2008).

    CAS  Article  Google Scholar 

  9. 9

    Janas, T., Janas, T. & Yarus, M. Specific RNA binding to ordered phospholipid bilayers. Nucleic Acids Res. 34, 2128–2136 (2006).

    CAS  Article  Google Scholar 

  10. 10

    Manavbasi, Y. & Suleymanoglu, E. Nucleic acid-phospholipid recognition: Fourier transform infrared spectrometric characterization of ternary phospholipid-inorganic cation-DNA complex and its relevance to chemicopharmaceutical design of nanometric liposome based gene delivery formulations. Arch. Pharm. Res. 30, 1027–1040 (2007).

    CAS  Article  Google Scholar 

  11. 11

    Suleymanoglu, E. Phospholipid-nucleic acid recognition: developing an immobilized liposome chromatography for DNA separation and analysis. PDA J. Pharm. Sci. Technol. 60, 232–239 (2006).

    CAS  PubMed  Google Scholar 

  12. 12

    Gromelski, S. & Brezesinski, G. DNA condensation and interaction with zwitterionic phospholipids mediated by divalent cations. Langmuir 22, 6293–6301 (2006).

    CAS  Article  Google Scholar 

  13. 13

    Kim, S. I. et al. Systemic and specific delivery of small interfering RNAs to the liver mediated by apolipoprotein A-I. Mol. Ther. 15, 1145–1152 (2007).

    CAS  Article  Google Scholar 

  14. 14

    McManus, J. J., Radler, J. O. & Dawson, K. A. Does calcium turn a zwitterionic lipid cationic? J. Phys. Chem. B 107, 9869–9875 (2003).

    CAS  Article  Google Scholar 

  15. 15

    Mengistu, D. H., Bohinc, K. & May, S. Binding of DNA to zwitterionic lipid layers mediated by divalent cations. J. Phys. Chem. B 113, 12277–12282 (2009).

    CAS  Article  Google Scholar 

  16. 16

    Thery, C., Amigorena, S., Raposo, G. & Clayton, A. Curr. Protoc. Cell Biol. Chapter 3, 22 (John Wiley & Sons, 2006) Unit 3.

    Google Scholar 

  17. 17

    Lima, E. S. & Maranhao, R. C. Rapid, simple laser-light-scattering method for HDL particle sizing in whole plasma. Clin. Chem. 50, 1086–1088 (2004).

    CAS  Article  Google Scholar 

  18. 18

    Simpson, R. J., Lim, J. W., Moritz, R. L. & Mathivanan, S. Exosomes: proteomic insights and diagnostic potential. Expert Rev. Proteomics 6, 267–283 (2009).

    CAS  Article  Google Scholar 

  19. 19

    Mathivanan, S. & Simpson, R. J. ExoCarta: a compendium of exosomal proteins and RNA. Proteomics 9, 4997–5000 (2009).

    CAS  Article  Google Scholar 

  20. 20

    Conde-Vancells, J. et al. Characterization and comprehensive proteome profiling of exosomes secreted by hepatocytes. J. Proteome Res. 7, 5157–5166 (2008).

    CAS  Article  Google Scholar 

  21. 21

    Lim, L. P., Glasner, M. E., Yekta, S., Burge, C. B. & Bartel, D.P. Vertebrate microRNA genes. Science 299, 1540 (2003).

    CAS  Article  Google Scholar 

  22. 22

    Chen, C. Z., Li, L., Lodish, H. F. & Bartel, D. P. MicroRNAs modulate hematopoietic lineage differentiation. Science 303, 83–86 (2004).

    CAS  Article  Google Scholar 

  23. 23

    Rader, D. J., Cohen, J. & Hobbs, H. H. Monogenic hypercholesterolemia: New insights in pathogenesis and treatment. J. Clin. Invest. 111, 1795–1803 (2003).

    CAS  Article  Google Scholar 

  24. 24

    Lund-Katz, S. & Phillips, M. C. High density lipoprotein structure-function and role in reverse cholesterol transport. Subcell. Biochem. 51, 183–227 (2010).

    CAS  Article  Google Scholar 

  25. 25

    Kosaka, N. et al. Secretory mechanisms and intercellular transfer of microRNAs in living cells. J. Biol. Chem. 285, 17442–17452 (2010).

    CAS  Article  Google Scholar 

  26. 26

    Sun, G., Li, H. & Rossi, J. J. Sequence context outside the target region influences the effectiveness of miR-223 target sites in the RhoB 3′ UTR. Nucleic Acids Res. 38, 239–252 (2010).

    CAS  Article  Google Scholar 

  27. 27

    Cui, X. D. et al. EFNA1 ligand and its receptor EphA2: potential biomarkers for hepatocellular carcinoma. Int. J. Cancer 126, 940–949 (2010).

    CAS  PubMed  Google Scholar 

  28. 28

    Feinberg, E. H. & Hunter, C. P. Transport of dsRNA into cells by the transmembrane protein SID-1. Science 301, 1545–1547 (2003).

    CAS  Article  Google Scholar 

  29. 29

    Wolfrum, C. et al. Mechanisms and optimization of in vivo delivery of lipophilic siRNAs. Nat. Biotechnol. 25, 1149–1157 (2007).

    CAS  Article  Google Scholar 

  30. 30

    Lewis, B. P., Burge, C. B. & Bartel, D. P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20 (2005).

    CAS  Article  Google Scholar 

  31. 31

    Friedman, R. C., Farh, K. K., Burge, C. B. & Bartel, D. P. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19, 92–105 (2009).

    CAS  Article  Google Scholar 

  32. 32

    Podrez, E. A. Antioxidant properties of high density lipoprotein and atherosclerosis. Clin. Exp. Pharmacol. Physiol. 37, 719–725 (2010).

    CAS  Article  Google Scholar 

  33. 33

    Heinecke, J. W. The HDL proteome: a marker–and perhaps mediator–of coronary artery disease. J. Lipid Res. 50 (Suppl), S167–171 (2009).

    Article  Google Scholar 

  34. 34

    Rothblat, G. H. & Phillips, M. C. High-density lipoprotein heterogeneity and function in reverse cholesterol transport. Curr. Opin. Lipidol. 21, 229–238 (2010).

    CAS  Article  Google Scholar 

  35. 35

    Lu, D. & Rhodes, D. G. Binding of phosphorothioate oligonucleotides to zwitterionic liposomes. Biochim. Biophys. Acta 1563, 45–52 (2002).

    CAS  Article  Google Scholar 

  36. 36

    Qiu, X. et al. Crystal structure of cholesteryl ester transfer protein reveals a long tunnel and four bound lipid molecules. Nat. Struct. Mol. Biol. 14, 106–113 (2007).

    Article  Google Scholar 

  37. 37

    Trajkovic, K. et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319, 1244–1247 (2008).

    CAS  Article  Google Scholar 

  38. 38

    Ferracin, M., Veronese, A. & Negrini, M. Micromarkers: miRNAs in cancer diagnosis and prognosis. Expert Rev. Mol. Diagn. 10, 297–308 (2010).

    CAS  Article  Google Scholar 

  39. 39

    Wang, G. K. et al. Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur. Heart J. 31, 659–666 (2010).

    Article  Google Scholar 

  40. 40

    Wang, J. F. et al. Serum miR-146a and miR-223 as potential new biomarkers for sepsis. Biochem. Biophys. Res. Commun. 394, 184–188 (2010).

    CAS  Article  Google Scholar 

  41. 41

    Heneghan, H. M., Miller, N., Lowery, A. J., Sweeney, K. J. & Kerin, M. J. MicroRNAs as novel biomarkers for breast cancer. J. Oncol. 2009, 950201 (2009).

    CAS  PubMed  Google Scholar 

  42. 42

    Gilad, S. et al. Serum microRNAs are promising novel biomarkers. PLoS One 3, e3148 (2008).

    Article  Google Scholar 

  43. 43

    MacArthur, J. M. et al. Liver heparan sulfate proteoglycans mediate clearance of triglyceride-rich lipoproteins independently of LDL receptor family members. J. Clin. Invest. 117, 153–164 (2007).

    CAS  Article  Google Scholar 

  44. 44

    Ramakrishnan, S. N., Lau, P., Burke, L. J. & Muscat, G. E. Rev-erbbeta regulates the expression of genes involved in lipid absorption in skeletal muscle cells: evidence for cross-talk between orphan nuclear receptors and myokines. J. Biol. Chem. 280, 8651–8659 (2005).

    CAS  Article  Google Scholar 

  45. 45

    Yao, Y. et al. High-density lipoproteins affect endothelial BMP-signaling by modulating expression of the activin-like kinase receptor 1 and 2. Arterioscler. Thromb. Vasc. Biol. 28, 2266–2274 (2008).

    CAS  Article  Google Scholar 

  46. 46

    Moreno, P. R., Purushothaman, K. R., Sirol, M., Levy, A. P. & Fuster, V. Neovascularization in human atherosclerosis. Circulation 113, 2245–2252 (2006).

    Article  Google Scholar 

  47. 47

    Lee, H. et al. Hepatic siRNA delivery using recombinant human apolipoprotein A-I in mice. Biochem. Biophys. Res. Commun. 378, 192–196 (2009).

    CAS  Article  Google Scholar 

  48. 48

    Fukao, T. et al. An evolutionarily conserved mechanism for microRNA-223 expression revealed by microRNA gene profiling. Cell 129, 617–631 (2007).

    CAS  Article  Google Scholar 

  49. 49

    Gentner, B. et al. Stable knockdown of microRNA in vivo by lentiviral vectors. Nat. Methods 6, 63–66 (2009).

    CAS  Article  Google Scholar 

  50. 50

    Eyholzer, M. et al. Complexity of miR-223 regulation by CEBPA in human AML. Leuk. Res. 34, 672–676 (2010).

    CAS  Article  Google Scholar 

  51. 51

    Fazi, F. et al. A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPα regulates human granulopoiesis. Cell 123, 819–831 (2005).

    CAS  Article  Google Scholar 

  52. 52

    Pulikkan, J. A. et al. Cell-cycle regulator E2F1 and microRNA-223 comprise an autoregulatory negative feedback loop in acute myeloid leukemia. Blood 115, 1768–1778 (2010).

    CAS  Article  Google Scholar 

  53. 53

    Lu, H., Buchan, R. J. & Cook, S. A. MicroRNA-223 regulates Glut4 expression and cardiomyocyte glucose metabolism. Cardiovasc. Res. 86, 410–420 (2010).

    CAS  Article  Google Scholar 

  54. 54

    Yu, C. H., Xu, C. F. & Li, Y. M. Association of MicroRNA-223 expression with hepatic ischemia/reperfusion injury in mice. Dig. Dis. Sci. 54, 2362–2366 (2009).

    CAS  Article  Google Scholar 

  55. 55

    Sugatani, T. & Hruska, K. A. MicroRNA-223 is a key factor in osteoclast differentiation. J. Cell Biochem. 101, 996–999 (2007).

    CAS  Article  Google Scholar 

  56. 56

    Iida, H. et al. Ephrin-A1 expression contributes to the malignant characteristics of {α}-fetoprotein producing hepatocellular carcinoma. Gut 54, 843–851 (2005).

    CAS  Article  Google Scholar 

  57. 57

    Huang, L. et al. Immunoaffinity separation of plasma proteins by IgY microbeads: meeting the needs of proteomic sample preparation and analysis. Proteomics 5, 3314–3328 (2005).

    CAS  Article  Google Scholar 

  58. 58

    Nieuwland, R. et al. Cellular origin and procoagulant properties of microparticles in meningococcal sepsis. Blood 95, 930–935 (2000).

    CAS  PubMed  Google Scholar 

  59. 59

    Matz, C. E. & Jonas, A. Micellar complexes of human apolipoprotein A-I with phosphatidylcholines and cholesterol prepared from cholate-lipid dispersions. J. Biol. Chem. 257, 4535–4540 (1982).

    CAS  PubMed  Google Scholar 

  60. 60

    Griffiths-Jones, S., Saini, H. K., van Dongen, S. & Enright, A. J. miRBase: tools for microRNA genomics. Nucleic Acids Res. 36, D154–158 (2008).

    CAS  Article  Google Scholar 

  61. 61

    Cline, M. S. et al. Integration of biological networks and gene expression data using Cytoscape. Nat. Protoc. 2, 2366–2382 (2007).

    CAS  Article  Google Scholar 

  62. 62

    Li, C. & Wong, W. H. Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc. Natl Acad. Sci. USA 98, 31–36 (2001).

    CAS  Article  Google Scholar 

Download references


This study was helped by the NHLBI Electron Microscopy Core, Genomics Core and Proteomics Core Facilities. Special thanks are extended to P. Sethupathy, PhD, for target prediction and discussion, M. Sampson for her work on patient lipid profiles and A. Loncarich for statistical analysis. This research was supported in total by the Intramural Research Program of the NIH, NHLBI DIR.

Author information




K.C.V., B.T.P. and A.T.R. designed the research plan and study. K.C.V., B.T.P. and B.M.S. carried out all experiments. R.D.S. provided human samples. K.C.V. and A.T.R. drafted and edited the manuscript.

Corresponding author

Correspondence to Kasey C. Vickers.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 620 kb)

Supplementary Information

Supplementary Information (PDF 1113 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vickers, K., Palmisano, B., Shoucri, B. et al. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol 13, 423–433 (2011). https://doi.org/10.1038/ncb2210

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing