Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

53BP1 nuclear bodies form around DNA lesions generated by mitotic transmission of chromosomes under replication stress

Abstract

Completion of genome duplication is challenged by structural and topological barriers that impede progression of replication forks. Although this can seriously undermine genome integrity, the fate of DNA with unresolved replication intermediates is not known. Here, we show that mild replication stress increases the frequency of chromosomal lesions that are transmitted to daughter cells. Throughout G1, these lesions are sequestered in nuclear compartments marked by p53-binding protein 1 (53BP1) and other chromatin-associated genome caretakers. We show that the number of such 53BP1 nuclear bodies increases after genetic ablation of BLM, a DNA helicase associated with dissolution of entangled DNA. Conversely, 53BP1 nuclear bodies are partially suppressed by knocking down SMC2, a condensin subunit required for mechanical stability of mitotic chromosomes. Finally, we provide evidence that 53BP1 nuclear bodies shield chromosomal fragile sites sequestered in these compartments against erosion. Together, these data indicate that restoration of DNA or chromatin integrity at loci prone to replication problems requires mitotic transmission to the next cell generations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: 53BP1 nuclear bodies are induced by replication stress and are largely confined to G1 nuclei.
Figure 2: 53BP1 nuclear bodies show a symmetrical pattern in G1 daughter cells.
Figure 3: 53BP1 nuclear bodies often form at non-overlapping loci during successive cell generations.
Figure 4: 53BP1 nuclear bodies associate with common fragile sites and are induced by BLM depletion.
Figure 5: DNA lesions are transmitted from mitosis to daughter cells.
Figure 6: Depletion of SMC2 suppresses DNA breakage in mitosis.
Figure 7: 53BP1 accumulation shields under-replicated loci.
Figure 8

Similar content being viewed by others

References

  1. Bartek, J. & Lukas, J. DNA damage checkpoints: From initiation to recovery or adaptation. Curr. Opin. Cell Biol. 19, 238–245 (2007).

    Article  CAS  Google Scholar 

  2. Harper, J. W. & Elledge, S. J. The DNA damage response: Ten years after. Mol. Cell 28, 739–745 (2007).

    Article  CAS  Google Scholar 

  3. Jackson, S. P. & Bartek, J. The DNA-damage response in human biology and disease. Nature 461, 1071–1078 (2009).

    Article  CAS  Google Scholar 

  4. Aguilera, A. & Gomez-Gonzalez, B. Genome instability: A mechanistic view of its causes and consequences. Nat. Rev. Genet. 9, 204–217 (2008).

    Article  CAS  Google Scholar 

  5. Durkin, S. G. & Glover, T. W. Chromosome fragile sites. Annu. Rev. Genet. 41, 169–192 (2007).

    Article  CAS  Google Scholar 

  6. Paulsen, R. D. et al. A genome-wide siRNA screen reveals diverse cellular processes and pathways that mediate genome stability. Mol. Cell 35, 228–239 (2009).

    Article  CAS  Google Scholar 

  7. Schwob, E. Flexibility and governance in eukaryotic DNA replication. Curr. Opin. Microbiol. 7, 680–690 (2004).

    Article  CAS  Google Scholar 

  8. Sfeir, A. et al. Mammalian telomeres resemble fragile sites and require TRF1 for efficient replication. Cell 138, 90–103 (2009).

    Article  CAS  Google Scholar 

  9. Szilard, R. K. et al. Systematic identification of fragile sites via genome-wide location analysis of gamma-H2AX. Nat. Struct. Mol. Biol. 17, 299–305 (2010).

    Article  CAS  Google Scholar 

  10. Tuduri, S. et al. Topoisomerase I suppresses genomic instability by preventing interference between replication and transcription. Nat. Cell Biol. 11, 1315–1324 (2009).

    Article  CAS  Google Scholar 

  11. Dulev, S. et al. Essential global role of CDC14 in DNA synthesis revealed by chromosome underreplication unrecognized by checkpoints in cdc14 mutants. Proc. Natl Acad. Sci. USA 106, 14466–14471 (2009).

    Article  CAS  Google Scholar 

  12. Torres-Rosell, J. et al. Anaphase onset before complete DNA replication with intact checkpoint responses. Science 315, 1411–1415 (2007).

    Article  CAS  Google Scholar 

  13. Chu, W. K. & Hickson, I. D. RecQ helicases: Multifunctional genome caretakers. Nat. Rev. Cancer 9, 644–654 (2009).

    Article  CAS  Google Scholar 

  14. Baumann, C., Korner, R., Hofmann, K. & Nigg, E. A. PICH, a centromere-associated SNF2 family ATPase, is regulated by Plk1 and required for the spindle checkpoint. Cell 128, 101–114 (2007).

    Article  CAS  Google Scholar 

  15. Chan, K. L. & Hickson, I. D. On the origins of ultra-fine anaphase bridges. Cell Cycle 8, 3065–3066 (2009).

    Article  CAS  Google Scholar 

  16. Chan, K. L., North, P. S. & Hickson, I. D. BLM is required for faithful chromosome segregation and its localization defines a class of ultrafine anaphase bridges. EMBO J. 26, 3397–3409 (2007).

    Article  CAS  Google Scholar 

  17. Chan, K. L., Palmai-Pallag, T., Ying, S. & Hickson, I. D. Replication stress induces sister-chromatid bridging at fragile site loci in mitosis. Nat. Cell Biol. 11, 753–760 (2009).

    Article  CAS  Google Scholar 

  18. Naim, V. & Rosselli, F. The FANC pathway and BLM collaborate during mitosis to prevent micro-nucleation and chromosome abnormalities. Nat. Cell Biol. 11, 761–768 (2009).

    Article  CAS  Google Scholar 

  19. Bekker-Jensen, S., Lukas, C., Melander, F., Bartek, J. & Lukas, J. Dynamic assembly and sustained retention of 53BP1 at the sites of DNA damage are controlled by Mdc1/NFBD1. J. Cell Biol. 170, 201–211 (2005).

    Article  CAS  Google Scholar 

  20. Doil, C. et al. RNF168 binds and amplifies ubiquitin conjugates ondamaged chromosomes to allow accumulation of repair proteins. Cell 136, 435–446 (2009).

    Article  CAS  Google Scholar 

  21. Mochan, T. A., Venere, M., DiTullio, R. A. Jr & Halazonetis, T. D. 53BP1, anactivator of ATM in response to DNA damage. DNA Repair (Amst) 3, 945–952 (2004).

    Article  CAS  Google Scholar 

  22. Marteijn, J. A. et al. Nucleotide excision repair-induced H2A ubiquitination is dependent on MDC1 and RNF8 and reveals a universal DNA damage response. J. Cell Biol. 186, 835–847 (2009).

    Article  CAS  Google Scholar 

  23. Lavin, M. F. Ataxia-telangiectasia: From a rare disorder to a paradigm for cell signalling and cancer. Nat. Rev. Mol. Cell Biol. 9, 759–769 (2008).

    Article  CAS  Google Scholar 

  24. Shiloh, Y. The ATM-mediated DNA-damage response: Taking shape. Trends Biochem. Sci. 31, 402–410 (2006).

    Article  CAS  Google Scholar 

  25. Bakkenist, C. J. & Kastan, M. B. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421, 486–488 (2003).

    Article  Google Scholar 

  26. Branzei, D. & Foiani, M. Maintaining genome stability at the replication fork. Nat. Rev. Mol. Cell Biol. 11, 208–219 (2010).

    Article  CAS  Google Scholar 

  27. Cimprich, K. A. & Cortez, D. ATR: An essential regulator of genome integrity. Nat. Rev. Mol. Cell Biol. 9, 616–627 (2008).

    Article  CAS  Google Scholar 

  28. Groth, A., Rocha, W., Verreault, A. & Almouzni, G. Chromatin challenges during DNA replication and repair. Cell 128, 721–733 (2007).

    Article  CAS  Google Scholar 

  29. Nelson, G., Buhmann, M. & von Zglinicki, T. DNA damage foci in mitosis are devoid of 53BP1. Cell Cycle 8, 3379–3383 (2009).

    Article  CAS  Google Scholar 

  30. Giunta, S., Belotserkovskaya, R. & Jackson, S. P. DNA damage signaling in response to double-strand breaks during mitosis. J. Cell Biol. 190, 197–207 (2010).

    Article  CAS  Google Scholar 

  31. Gerlich, D., Hirota, T., Koch, B., Peters, J. M. & Ellenberg, J. Condensin I stabilizes chromosomes mechanically through a dynamic interaction in live cells. Curr. Biol. 16, 333–344 (2006).

    Article  CAS  Google Scholar 

  32. Vagnarelli, P. et al. Condensin and Repo-Man-PP1 co-operate in the regulation of chromosome architecture during mitosis. Nat. Cell Biol. 8, 1133–1142 (2006).

    Article  CAS  Google Scholar 

  33. Noon, A. T. et al. 53BP1-dependent robust localized KAP-1 phosphorylation is essential for heterochromatic DNA double-strand break repair. Nat. Cell Biol. 12, 177–184 (2010).

    Article  CAS  Google Scholar 

  34. Ziv, Y. et al. Chromatin relaxation in response to DNA double-strand breaks is modulated by a novel ATM- and KAP-1 dependent pathway. Nat. Cell Biol. 8, 870–876 (2006).

    Article  CAS  Google Scholar 

  35. Royou, A., Gagou, M. E., Karess, R. & Sullivan, W. BubR1- and Polo-coated DNA tethers facilitate poleward segregation of acentric chromatids. Cell 140, 235–245 (2010).

    Article  CAS  Google Scholar 

  36. Callen, E. et al. ATM prevents the persistence and propagation of chromosome breaks in lymphocytes. Cell 130, 63–75 (2007).

    Article  CAS  Google Scholar 

  37. Bothmer, A. et al. 53BP1 regulates DNA resection and the choice between classical and alternative end joining during class switch recombination. J. Exp. Med. 207, 855–865 (2010).

    Article  CAS  Google Scholar 

  38. Bouwman, P. et al. 53BP1 loss rescues BRCA1 deficiency and is associated with triple-negative and BRCA-mutated breast cancers. Nat. Struct. Mol. Biol. 17, 688–695 (2010).

    Article  CAS  Google Scholar 

  39. Bunting, S. F. et al. 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks. Cell 141, 243–254 (2010).

    Article  CAS  Google Scholar 

  40. Helmink, B. A. et al. H2AX prevents CtIP-mediated DNA end resection and aberrant repair in G1-phase lymphocytes. Nature 469, 245–249 (2011).

    Article  CAS  Google Scholar 

  41. Bartkova, J. et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434, 864–870 (2005).

    Article  CAS  Google Scholar 

  42. Bartkova, J. et al. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 444, 633–637 (2006).

    Article  CAS  Google Scholar 

  43. Di Micco, R. et al. Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 444, 638–642 (2006).

    Article  CAS  Google Scholar 

  44. Gorgoulis, V. G. et al. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434, 907–913 (2005).

    Article  CAS  Google Scholar 

  45. Halazonetis, T. D., Gorgoulis, V. G. & Bartek, J. An oncogene-induced DNA damage model for cancer development. Science 319, 1352–1355 (2008).

    Article  CAS  Google Scholar 

  46. Bignell, G. R. et al. Signatures of mutation and selection in the cancer genome. Nature 463, 893–898 (2010).

    Article  CAS  Google Scholar 

  47. Bekker-Jensen, S. et al. Spatial organization of the mammalian genome surveillance machinery in response to DNA strand breaks. J. Cell Biol. 173, 195–206 (2006).

    Article  CAS  Google Scholar 

  48. Lukas, C., Falck, J., Bartkova, J., Bartek, J. & Lukas, J. Distinct spatiotemporal dynamics of mammalian checkpoint regulators induced by DNA damage. Nat. Cell Biol. 5, 255–260 (2003).

    Article  CAS  Google Scholar 

  49. Neumann, B. et al. Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes. Nature 464, 721–727 (2010).

    Article  CAS  Google Scholar 

  50. Savic, V. et al. Formation of dynamic gamma-H2AX domains along broken DNA strands is distinctly regulated by ATM and MDC1 and dependent on H2AX densities in chromatin. Mol. Cell 34, 298–310 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Ellenberg and R. Pepperkok for help with the siRNA screen and for commenting on the manuscript. We also thank J. Chen, D. Durocher and R. Freire for reagents. This work was supported by grants from the Danish Cancer Society, Danish National Research Foundation, European Commission (projects GENICA, and Biomedreg), the Lunbeck Foundation, Danish Council for Independent Research—Medical Sciences, and the John and Birthe Meyer Foundation.

Author information

Authors and Affiliations

Authors

Contributions

C.L. and J.L. conceived the study. C.L. carried out or supervised all imaging experiments; V.S. carried out the ChIP analyses and TdT labelling; C.L., B.N. and C.D. carried out and mined the siRNA screen; S.B-J. analysed 53BP1 nuclear dynamics; R.S.P. analysed 53BP1 focus formation in synchronized cells; M.G. analysed the siRNA specificity by western blotting; and K.L.C. and I.D.H. contributed to the BLM analysis and UFB detection. All authors participated in data analyses. I.D.H., J.B. and J.L. wrote the manuscript.

Corresponding authors

Correspondence to Jiri Bartek or Jiri Lukas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3099 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lukas, C., Savic, V., Bekker-Jensen, S. et al. 53BP1 nuclear bodies form around DNA lesions generated by mitotic transmission of chromosomes under replication stress. Nat Cell Biol 13, 243–253 (2011). https://doi.org/10.1038/ncb2201

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2201

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing