Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inactivation of Rheb by PRAK-mediated phosphorylation is essential for energy-depletion-induced suppression of mTORC1

Subjects

Abstract

Cell growth can be suppressed by stressful environments, but the role of stress pathways in this process is largely unknown. Here we show that a cascade of p38β mitogen-activated protein kinase (MAPK) and p38-regulated/activated kinase (PRAK) plays a role in energy-starvation-induced suppression of mammalian target of rapamycin (mTOR), and that energy starvation activates the p38β–PRAK cascade. Depletion of p38β or PRAK diminishes the suppression of mTOR complex 1 (mTORC1) and reduction of cell size induced by energy starvation. We show that p38β–PRAK operates independently of the known mTORC1 inactivation pathways—phosphorylation of tuberous sclerosis protein 2 (TSC2) and Raptor by AMP-activated protein kinase (AMPK)—and surprisingly, that PRAK directly regulates Ras homologue enriched in brain (Rheb), a key component of the mTORC1 pathway, by phosphorylation. Phosphorylation of Rheb at Ser 130 by PRAK impairs the nucleotide-binding ability of Rheb and inhibits Rheb-mediated mTORC1 activation. The direct regulation of Rheb by PRAK integrates a stress pathway with the mTORC1 pathway in response to energy depletion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: p38β is essential for the 2-DG-induced cellular response.
Figure 2: PRAK is essential for the 2-DG-induced cellular response.
Figure 3: p38β and PRAK selectively participate in certain forms of energy-depletion-induced mTORC1 inactivation.
Figure 4: Suppression of mTORC1 by PRAK is independent of AMPK.
Figure 5: Suppression of mTORC1 by PRAK is independent of TSC2.
Figure 6: PRAK regulates Rheb by phosphorylation of Rheb on Ser 130.
Figure 7: Rheb phosphorylation by PRAK reduces the nucleotide binding ability of Rheb.

Similar content being viewed by others

References

  1. Cuenda, A. & Rousseau, S. p38 MAP-kinases pathway regulation, function and role in human diseases. Biochim. Biophys. Acta 1773, 1358–1375 (2007).

    Article  CAS  Google Scholar 

  2. English, J. M. & Cobb, M. H. Pharmacological inhibitors of MAPK pathways. Trends Pharmacol. Sci. 23, 40–45 (2002).

    CAS  PubMed  Google Scholar 

  3. Nebreda, A. R. & Porras, A. p38 MAP kinases: beyond the stress response. Trends Biochem. Sci. 25, 257–260 (2000).

    CAS  PubMed  Google Scholar 

  4. Ono, K. & Han, J. The p38 signal transduction pathway: activation and function. Cell Signal. 12, 1–13 (2000).

    Article  CAS  Google Scholar 

  5. Han, J., Lee, J. D., Bibbs, L. & Ulevitch, R. J. A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science 265, 808–811 (1994).

    Article  CAS  Google Scholar 

  6. Jiang, Y. et al. Characterization of the structure and function of a new mitogen-activated protein kinase (p38β). J. Biol. Chem. 271, 17920–17926 (1996).

    Article  CAS  Google Scholar 

  7. Li, Z., Jiang, Y., Ulevitch, R. J. & Han, J. The primary structure of p38γ: a new member of p38 group of MAP kinases. Biochem. Biophys. Res. Commun. 228, 334–340 (1996).

    Article  CAS  Google Scholar 

  8. Jiang, Y. et al. Characterization of the structure and function of the fourth member of p38 group mitogen-activated protein kinases, p38δ. J. Biol. Chem. 272, 30122–30128 (1997).

    Article  CAS  Google Scholar 

  9. Zarubin, T. & Han, J. Activation and signaling of the p38 MAP kinase pathway. Cell Res. 15, 11–18 (2005).

    CAS  PubMed  Google Scholar 

  10. Rincon, M. & Davis, R. J. Regulation of the immune response by stress-activated protein kinases. Immunol. Rev. 228, 212–224 (2009).

    Article  CAS  Google Scholar 

  11. Reiling, J. H. & Sabatini, D. M. Stress and mTORture signaling. Oncogene 25, 6373–6383 (2006).

    Article  CAS  Google Scholar 

  12. Wullschleger, S., Loewith, R. & Hall, M. N. TOR signaling in growth and metabolism. Cell 124, 471–484 (2006).

    Article  CAS  Google Scholar 

  13. Sengupta, S., Peterson, T. R. & Sabatini, D. M. Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol. Cell 40, 310–322 (2010).

    Article  CAS  Google Scholar 

  14. Sabatini, D. M. mTOR and cancer: insights into a complex relationship. Nat. Rev. Cancer 6, 729–734 (2006).

    Article  CAS  Google Scholar 

  15. Sabatini, D. M., Erdjument-Bromage, H., Lui, M., Tempst, P. & Snyder, S. H. RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell 78, 35–43 (1994).

    Article  CAS  Google Scholar 

  16. Jacinto, E. et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat. Cell Biol. 6, 1122–1128 (2004).

    Article  CAS  Google Scholar 

  17. Loewith, R. et al. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol. Cell 10, 457–468 (2002).

    Article  CAS  Google Scholar 

  18. Sarbassov, D. D., Guertin, D. A., Ali, S. M. & Sabatini, D. M. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307, 1098–1101 (2005).

    Article  CAS  Google Scholar 

  19. Kim, D. H. et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110, 163–175 (2002).

    Article  CAS  Google Scholar 

  20. Guertin, D. A. et al. Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCα, but not S6K1. Dev. Cell 11, 859–871 (2006).

    Article  CAS  Google Scholar 

  21. Vander, H. E., Lee, S. I., Bandhakavi, S., Griffin, T. J. & Kim, D. H. Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat. Cell Biol. 9, 316–323 (2007).

    Article  Google Scholar 

  22. Peterson, T. R. et al. DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 137, 873–886 (2009).

    Article  CAS  Google Scholar 

  23. Hardie, D. G. Role of AMP-activated protein kinase in the metabolic syndrome and in heart disease. FEBS Lett. 582, 81–89 (2008).

    Article  CAS  Google Scholar 

  24. Shackelford, D. B. & Shaw, R. J. The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat. Rev. Cancer 9, 563–575 (2009).

    Article  CAS  Google Scholar 

  25. Inoki, K., Zhu, T. & Guan, K. L. TSC2 mediates cellular energy response to control cell growth and survival. Cell 115, 577–590 (2003).

    Article  CAS  Google Scholar 

  26. Garami, A. et al. Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2. Mol. Cell 11, 1457–1466 (2003).

    Article  CAS  Google Scholar 

  27. Aspuria, P. J. & Tamanoi, F. The Rheb family of GTP-binding proteins. Cell Signal. 16, 1105–1112 (2004).

    Article  CAS  Google Scholar 

  28. Long, X., Lin, Y., Ortiz-Vega, S., Yonezawa, K. & Avruch, J. Rheb binds and regulates the mTOR kinase. Curr. Biol. 15, 702–713 (2005).

    Article  CAS  Google Scholar 

  29. Zhang, Y. et al. Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nat. Cell Biol. 5, 578–581 (2003).

    Article  CAS  Google Scholar 

  30. Inoki, K., Li, Y., Xu, T. & Guan, K. L. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev. 17, 1829–1834 (2003).

    Article  CAS  Google Scholar 

  31. Gwinn, D. M. et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell 30, 214–226 (2008).

    Article  CAS  Google Scholar 

  32. Um, S. H., D’Alessio, D. & Thomas, G. Nutrient overload, insulin resistance, and ribosomal protein S6 kinase 1, S6K1. Cell Metab. 3, 393–402 (2006).

    Article  CAS  Google Scholar 

  33. Li, Y., Inoki, K., Vacratsis, P. & Guan, K. L. The p38 and MK2 kinase cascade phosphorylates tuberin, the tuberous sclerosis 2 gene product, and enhances its interaction with 14-3-3. J. Biol. Chem. 278, 13663–13671 (2003).

    Article  CAS  Google Scholar 

  34. Cully, M. et al. A role for p38 stress-activated protein kinase in regulation of cell growth via TORC1. Mol. Cell. Biol. 30, 481–495 (2010).

    Article  CAS  Google Scholar 

  35. Fingar, D. C., Salama, S., Tsou, C., Harlow, E. & Blenis, J. Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E. Genes Dev. 16, 1472–1487 (2002).

    Article  CAS  Google Scholar 

  36. Potter, C. J. & Xu, T. Mechanisms of size control. Curr. Opin. Genet. Dev. 11, 279–286 (2001).

    Article  CAS  Google Scholar 

  37. New, L. et al. PRAK, a novel protein kinase regulated by the p38 MAP kinase. EMBO J. 17, 3372–3384 (1998).

    Article  CAS  Google Scholar 

  38. Freshney, N. W. et al. Interleukin-1 activates a novel protein kinase cascade that results in the phosphorylation of Hsp27. Cell 78, 1039–1049 (1994).

    Article  CAS  Google Scholar 

  39. Rouse, J. et al. A novel kinase cascade triggered by stress and heat shock that stimulates MAPKAP kinase-2 and phosphorylation of the small heat shock proteins. Cell 78, 1027–1037 (1994).

    Article  CAS  Google Scholar 

  40. Li, Q. et al. Determinants that control the distinct subcellular localization of p38α-PRAK and p38β-PRAK complexes. J. Biol. Chem. 283, 11014–11023 (2008).

    Article  CAS  Google Scholar 

  41. New, L., Jiang, Y. & Han, J. Regulation of PRAK subcellular location by p38 MAP kinases. Mol. Biol. Cell 14, 2603–2616 (2003).

    Article  CAS  Google Scholar 

  42. Hardie, D. G., Carling, D. & Carlson, M. The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu. Rev. Biochem. 67, 821–855 (1998).

    Article  CAS  Google Scholar 

  43. Kalender, A. et al. Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell Metab. 11, 390–401 (2010).

    Article  CAS  Google Scholar 

  44. Sancak, Y. et al. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141, 290–303 (2010).

    Article  CAS  Google Scholar 

  45. Shaw, R. J. et al. The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc. Natl Acad. Sci. USA 101, 3329–3335 (2004).

    Article  CAS  Google Scholar 

  46. Yu, Y. et al. Structural basis for the unique biological function of small GTPase RHEB. J. Biol. Chem. 280, 17093–17100 (2005).

    Article  CAS  Google Scholar 

  47. Yuan, J. et al. Identification and characterization of RHEBL1, a novel member of Ras family, which activates transcriptional activities of NF-kappa B. Mol. Biol. Rep. 32, 205–214 (2005).

    Article  CAS  Google Scholar 

  48. Sun, P. et al. PRAK is essential for ras-induced senescence and tumor suppression. Cell 128, 295–308 (2007).

    Article  CAS  Google Scholar 

  49. New, L. et al. PRAK, a novel protein kinase regulated by the p38 MAP kinase. EMBO J. 17, 3372–3384 (1998).

    Article  CAS  Google Scholar 

  50. Inoki, K., Zhu, T. & Guan, K. L. TSC2 mediates cellular energy response to control cell growth and survival. Cell 115, 577–590 (2003).

    Article  CAS  Google Scholar 

  51. Zhang, H. et al. Loss of Tsc1/Tsc2 activates mTOR and disrupts PI3K-Akt signaling through downregulation of PDGFR. J. Clin. Invest 112, 1223–1233 (2003).

    Article  CAS  Google Scholar 

  52. Kwong, J. et al. p38α and p38γ mediate oncogenic ras-induced senescence through differential mechanisms. J. Biol. Chem. 284, 11237–11246 (2009).

    Article  CAS  Google Scholar 

  53. Inoki, K., Li, Y., Xu, T. & Guan, K. L. Rheb GTPase is a direct target ofTSC2 GAP activity and regulates mTOR signaling. Genes Dev. 17, 1829–1834 (2003).

    Article  CAS  Google Scholar 

  54. Kinoshita, E., Kinoshita-Kikuta, E., Takiyama, K. & Koike, T. Phosphate-binding tag, a new tool to visualize phosphorylated proteins. Mol. Cell Proteomics 5, 749–757 (2006).

    Article  CAS  Google Scholar 

  55. Yates, J. R. III, Eng, J. K., McCormack, A. L. & Schieltz, D. Method to correlate tandem mass spectra of modified peptides to amino acid sequences in the protein database. Anal. Chem. 67, 1426–1436 (1995).

    Article  CAS  Google Scholar 

  56. Tabb, D. L., McDonald, W. H. & Yates, J. R. III DTASelect and Contrast: tools for assembling and comparing protein identifications from shotgun proteomics. J. Proteome Res. 1, 21–26 (2002).

    Article  CAS  Google Scholar 

  57. Anderson, J. C. & Peck, S. C. A simple and rapid technique for detecting protein phosphorylation using one-dimensional isoelectric focusing gels and immunoblot analysis. Plant J. 55, 881–885 (2008).

    Article  CAS  Google Scholar 

  58. Garami, A. et al. Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2. Mol. Cell 11, 1457–1466 (2003).

    Article  CAS  Google Scholar 

  59. Roccio, M., Bos, J. L. & Zwartkruis, F. J. Regulation of the small GTPase Rheb by amino acids. Oncogene 25, 657–664 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank H. Jiang (Boehringer Ingelheim Pharmaceuticals) for providing p38 conditional knockout mice, B. Viollet (Universite Paris Descartes) and K. R. Laderoute (Stanford University School of Medicine) for A M P K α 1/α 2−/− cells. This work was supported by grants from NSF China 30830092, 30921005, 30828219, 973 program 2009CB22200, National Institutes of Health AI41637 and AI68896.

Author information

Authors and Affiliations

Authors

Contributions

M.Z., Y-H.W., X-N.W., S-Q.W. and J.H. designed and carried out the experiments. B-J.L. and M-Q.D. carried out mass spectrometry analysis. M.Z., H.Z., P.S., S-C.L., K-L.G. and J.H. participated in the interpretation of the data. M.Z. and J.H. wrote the manuscript.

Corresponding author

Correspondence to Jiahuai Han.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3550 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, M., Wang, YH., Wu, XN. et al. Inactivation of Rheb by PRAK-mediated phosphorylation is essential for energy-depletion-induced suppression of mTORC1. Nat Cell Biol 13, 263–272 (2011). https://doi.org/10.1038/ncb2168

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2168

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing