Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Calcineurin ensures a link between the DNA replication checkpoint and microtubule-dependent polarized growth

Abstract

Microtubules are central to eukaryotic cell morphogenesis. Microtubule plus-end tracking proteins (+TIPs) transport polarity factors to the cell cortex, thereby playing a key role in both microtubule dynamics and cell polarity. However, the signalling pathway linking +TIPs to cell polarity control remains elusive. Here we show that the fission yeast checkpoint kinase Cds1 (Chk2 homologue) delays the transition of growth polarity from monopolar to bipolar (termed NETO; new-end take-off). The +TIPs CLIP170 homologue Tip1 and kinesin Tea2 are responsible for this delay, which is accompanied by a reduction in microtubule dynamics at the cell tip. Remarkably, microtubule stabilization occurs asymmetrically, prominently at the non-growing cell end, which induces abnormal accumulation of the polarity factor Tea1. Importantly, NETO delay requires activation of calcineurin, which is carried out by Cds1, resulting in Tip1 dephosphorylation. Thus, our study establishes a critical link between calcineurin and checkpoint-dependent cell morphogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cds1 induces +TIPs-dependent NETO delay.
Figure 2: Calcineurin (CN) induces +TIPs-dependent NETO delay.
Figure 3: Cds1 and calcineurin physically interact with +TIPs.
Figure 4: Co-localization of Cds1, calcineurin and +TIPs.
Figure 5: Protein interactions with calcineurin are required for NETO delay.
Figure 6: Phosphorylation of calcineurin by Cds1 and dephosphorylation of Tip1 by calcineurin.
Figure 7: Cds1 regulates microtubule-dependent growth polarity through calcineurin and +TIPs.

Similar content being viewed by others

References

  1. Drubin, D. G. & Nelson, W. J. Origins of cell polarity. Cell 84, 335–344 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Hayles, J. & Nurse, P. A journey into space. Nat. Rev. Mol. Cell Biol. 2, 647–656 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Li, R. & Gundersen, G. G. Beyond polymer polarity: how the cytoskeleton builds a polarized cell. Nat. Rev. Mol. Cell Biol. 9, 860–873 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Akhmanova, A. & Steinmetz, M. O. Tracking the ends: a dynamic protein network controls the fate of microtubule tips. Nat. Rev. Mol. Cell Biol. 9, 309–322 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Busch, K. E. & Brunner, D. The microtubule plus end-tracking proteins mal3p and tip1p cooperate for cell-end targeting of interphase microtubules. Curr. Biol. 14, 548–559 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Brunner, D. & Nurse, P. CLIP170-like tip1p spatially organizes microtubular dynamics in fission yeast. Cell 102, 695–704 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Browning, H. et al. Tea2p is a kinesin-like protein required to generate polarized growth in fission yeast. J. Cell Biol. 151, 15–27 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Browning, H., Hackney, D. D. & Nurse, P. Targeted movement of cell end factors in fission yeast. Nat. Cell Biol. 5, 812–818 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Bieling, P. et al. Reconstitution of a microtubule plus-end tracking system in vitro. Nature 450, 1100–1105 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Mata, J. & Nurse, P. tea1 and the microtubular cytoskeleton are important for generating global spatial order within the fission yeast cell. Cell 89, 939–949 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Martin, S. G., McDonald, W. H., Yates, J. R. III & Chang, F. Tea4p links microtubule plus ends with the formin For3p in the establishment of cell polarity. Dev. Cell 8, 479–491 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Tatebe, H., Shimada, K., Uzawa, S., Morigasaki, S. & Shiozaki, K. Wsh3/Tea4 is a novel cell-end factor essential for bipolar distribution of Tea1 and protects cell polarity under environmental stress in S. pombe. Curr. Biol. 15, 1006–1015 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Mitchison, J. M. & Nurse, P. Growth in cell length in the fission yeast Schizosaccharomyces pombe. J. Cell Sci. 75, 357–376 (1985).

    CAS  PubMed  Google Scholar 

  14. Martin, S. G. Microtubule-dependent cell morphologenesis in the fission yeast. Trends Cell Biol. 19, 447–454 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Rhind, N. & Russell, P. Chk1 and Cds1: linchpins of the DNA damage and replication checkpoint pathways. J. Cell Sci. 113, 3889–3896 (2000).

    CAS  PubMed  Google Scholar 

  16. O’Connell, M. J., Walworth, N. C. & Carr, A. M. The G2-phase DNA-damage checkpoint. Trends Cell Biol. 10, 296–303 (2000).

    Article  PubMed  Google Scholar 

  17. D’Urso, G., Grallert, B. & Nurse, P. DNA polymerase alpha, a component of the replication initiation complex, is essential for the checkpoint coupling S phase to mitosis in fission yeast. J. Cell Sci. 108, 3109–3118 (1995).

    PubMed  Google Scholar 

  18. Lindsay, H. D. et al. S-phase-specific activation of Cds1 kinase defines a subpathway of the checkpoint response in Schizosaccharomyces pombe. Genes Dev. 12, 382–395 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rupes, I., Jia, Z. & Young, P. G. Ssp1 promotes actin depolymerization and is involved in stress response and new end take-off control in fission yeast. Mol. Biol. Cell 10, 1495–1510 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Snaith, H. A. & Sawin, K. E. Fission yeast mod5p regulates polarized growth through anchoring of tea1p at cell tips. Nature 423, 647–651 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Martin-Garcia, R. & Mulvihill, D. P. Myosin V spatially regulates microtubule dynamics and promotes the ubiquitin-dependent degradation of the fission yeast CLIP-170 homologue, Tip1. J. Cell Sci. 122, 3862–3872 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Klee, C. B., Ren, H. & Wang, X. Regulation of the calmodulin-stimulated protein phosphatase, calcineurin. J. Biol. Chem. 273, 13367–13370 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Yoshida, T., Toda, T. & Yanagida, M. A calcineurin-like gene ppb1+ in fission yeast: mutant defects in cytokinesis, cell polarity, mating and spindle pole body positioning. J. Cell Sci. 107, 1725–1735 (1994).

    CAS  PubMed  Google Scholar 

  24. Deng, L. et al. Real-time monitoring of calcineurin activity in living cells: evidence for two distinct Ca2+-dependent pathways in fission yeast. Mol. Biol. Cell 17, 4790–4800 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Stathopoulos, A. M. & Cyert, M. S. Calcineurin acts through the CRZ1/TCN1-encoded transcription factor to regulate gene expression in yeast. Genes Dev. 11, 3432–3444 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Aramburu, J. et al. Selective inhibition of NFAT activation by a peptide spanning the calcineurin targeting site of NFAT. Mol. Cell 1, 627–637 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Roy, J., Li, H., Hogan, P. G. & Cyert, M. S. A conserved docking site modulates substrate affinity for calcineurin, signalling output, and in vivo function. Mol. Cell 25, 889–901 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Seet, B. T., Dikic, I., Zhou, M. M. & Pawson, T. Reading protein modifications with interaction domains. Nat. Rev. Mol. Cell Biol. 7, 473–483 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. O’Neill, T. et al. Determination of substrate motifs for human Chk1 and hCds1/Chk2 by the oriented peptide library approach. J. Biol. Chem. 277, 16102–16115 (2002).

    Article  PubMed  Google Scholar 

  30. Wilson-Grady, J. T., Villen, J. & Gygi, S. P. Phosphoproteome analysis of fission yeast. J. Proteome Res. 7, 1088–1097 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Antoni, L., Sodha, N., Collins, I. & Garrett, M. D. CHK2 kinase: cancer susceptibility and cancer therapy—two sides of the same coin? Nat. Rev. Cancer 7, 925–936 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Nishiyama, T., Yoshizaki, N., Kishimoto, T. & Ohsumi, K. Transient activation of calcineurin is essential to initiate embryonic development in Xenopus laevis. Nature 449, 341–345 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Baek, K. H. et al. Down’s syndrome suppression of tumour growth and the role of the calcineurin inhibitor DSCR1. Nature 459, 1126–1130 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jordan, M. A. & Wilson, L. Microtubules as a target for anticancer drugs. Nat. Rev. Cancer 4, 253–265 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Dantal, J. & Soulillou, J. P. Immunosuppressive drugs and the risk of cancer after organ transplantation. N. Engl. J. Med. 352, 1371–1373 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. West, R. R., Vaisberg, E. V., Ding, R., Nurse, P. & McIntosh, J. R. cut11+: a gene required for cell cycle-dependent spindle pole body anchoring in the nuclear envelope and bipolar spindle formation in Schizosaccharomyces pombe. Mol. Biol. Cell 9, 2839–2855 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Moreno, S., Klar, A. & Nurse, P. Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol. 194, 795–823 (1991).

    Article  CAS  PubMed  Google Scholar 

  38. Damagnez, V., Tillit, J., de Recondo, A-M. & Baldacci, G. The POL1 gene from the fission yeast, Schizosaccharomyces pombe, shows conserved amino acid blocks specific for eukaryotic DNA polymerases alpha. Mol. Gen. Genet. 226, 182–189 (1991).

    Article  CAS  PubMed  Google Scholar 

  39. Bähler, J. et al. Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe. Yeast 14, 943–951 (1998).

    Article  PubMed  Google Scholar 

  40. Keeney, J. B. & Boeke, J. D. Efficient targeted integration at leu1-32 and ura4-294 in Schizosaccharomyces pombe. Genetics 136, 849–856 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Bähler, J. & Nurse, P. Fission yeast Pom1p kinase activity is cell cycle regulated and essential for cellular symmetry during growth and division. EMBO J. 20, 1064–1073 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kinoshita, E., Kinoshita-Kikuta, E., Takiyama, K. & Koike, T. Phosphate-binding tag, a new tool to visualize phosphorylated proteins. Mol. Cell. Proteomics 5, 749–757 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Smith, C. L. et al. An electrophoretic karyotype for Schizosaccharomyces pombe by pulsed field gel electrophoresis. Nucleic Acids Res. 15, 4481–4489 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank D. Brunner, K. Kitamura, H. Murakami and P. Russell for strains and plasmids; K. Gull for antibody; E. Kinoshita for Phos-tag; Astellas Pharma for providing FK506; and all members of our laboratory for their help. We also thank D. Brunner, S. Martin, D. McCollum, K. Sawin, M. Yanagida and J. Hirata for discussions; and H. Iefuji, K. Ono, T. Miyakawa and K. Hirata for their support. This work was supported by grants from the Ministry of Education, Science, and Culture of Japan (to K.K. and D.H.), and by Cancer Research UK (to T.T.)

Author information

Authors and Affiliations

Authors

Contributions

Experimental design and interpretation of data were conducted by all authors. K.K., T.K. and M.K. carried out experiments. K.K. and D.H. planned the project and D.H. wrote the paper with input from the co-authors. T.T. reviewed the manuscript.

Corresponding author

Correspondence to Dai Hirata.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1600 kb)

Supplementary Table

Supplementary Information (XLS 133 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kume, K., Koyano, T., Kanai, M. et al. Calcineurin ensures a link between the DNA replication checkpoint and microtubule-dependent polarized growth. Nat Cell Biol 13, 234–242 (2011). https://doi.org/10.1038/ncb2166

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2166

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing