Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Developmental roles for Srf, cortical cytoskeleton and cell shape in epidermal spindle orientation

Abstract

During development, a polarized epidermal sheet undergoes stratification and differentiation to produce the skin barrier. Through mechanisms that are poorly understood, the process involves actin dynamics, spindle reorientation and Notch signalling. To elucidate how epidermal embryogenesis is governed, we conditionally targeted serum response factor (Srf), a transcription factor that is essential for epidermal differentiation. Unexpectedly, previously ascribed causative defects are not responsible for profoundly perturbed embryonic epidermis. Seeking the mechanism for this, we identified actins and their regulators that were downregulated after ablation. Without Srf, cells exhibit a diminished cortical network and in mitosis, they fail to round up, features we recapitulate with low-dose actin inhibitors in vivo and shRNA-knockdown in vitro. Altered concomitantly are phosphorylated ERM and cortical myosin-IIA, shown in vitro to establish a rigid cortical actomyosin network and elicit critical shape changes. We provide a link between these features and Srf loss, and we show that the process is physiologically relevant in skin, as reflected by defects in spindle orientation, asymmetric cell divisions, stratification and differentiation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Srf is expressed in embryonic basal cells and when absent, morphological abnormalities originate at the basal to suprabasal juncture.
Figure 2: Alterations in biochemical markers of the basal–suprabasal switch are obvious by E17.5 in Srf-null epidermis.
Figure 3: Cell adhesion remains intact during embryonic development in Srf-cKO skin.
Figure 4: Conditional Srf ablation results in an early reduction in cortical actin, which seems to be directly responsible for an associated ability of early mitotic cells to round up during mitosis.
Figure 5: Srf-cKO early mitotic cells are defective in enriching and activating ERM proteins at the actin cortex and in recruiting myosin-IIA.
Figure 6: Actin and actin regulators downregulated in Srf-deficient basal cells are required for keratinocytes to undergo proper cortical and cell shape changes during mitosis.
Figure 7: Mitotic abnormalities in spindle orientation and LGN–NuMA localization in E16.5 Srf-cKO basal cells.

Similar content being viewed by others

References

  1. Blanpain, C. & Fuchs, E. Epidermal homeostasis: a balancing act of stem cells in the skin. Nat. Rev. Mol. Cell Biol. 10, 207–217 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Perez-Moreno, M., Jamora, C. & Fuchs, E. Sticky business: orchestrating cellular signals at adherens junctions. Cell 112, 535–548 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Lechler, T. & Fuchs, E. Asymmetric cell divisions promote stratification and differentiation of mammalian skin. Nature 437, 275–280 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kunda, P. & Baum, B. The actin cytoskeleton in spindle assembly and positioning. Trends Cell Biol. 19, 174–179 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Thery, M. & Bornens, M. Cell shape and cell division. Curr. Opin. Cell Biol. 18, 648–657 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Carreno, S. et al. Moesin and its activating kinase Slik are required for cortical stability and microtubule organization in mitotic cells. J. Cell Biol. 180, 739–746 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kunda, P., Pelling, A. E., Liu, T. & Baum, B. Moesin controls cortical rigidity, cell rounding, and spindle morphogenesis during mitosis. Curr. Biol. 18, 91–101 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Thery, M. et al. The extracellular matrix guides the orientation of the cell division axis. Nat. Cell Biol. 7, 947–953 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Kaji, N., Muramoto, A. & Mizuno, K. LIM kinase-mediated cofilin phosphorylation during mitosis is required for precise spindle positioning. J. Biol. Chem. 283, 4983–4992 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Cramer, L. P. & Mitchison, T. J. Investigation of the mechanism of retraction of the cell margin and rearward flow of nodules during mitotic cell rounding. Mol. Biol. Cell 8, 109–119 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cuenca, A. A., Schetter, A., Aceto, D., Kemphues, K. & Seydoux, G. Polarization of the C. elegans zygote proceeds via distinct establishment and maintenance phases. Development 130, 1255–1265 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Severson, A. F. & Bowerman, B. Myosin and the PAR proteins polarize microfilament-dependent forces that shape and position mitotic spindles in Caenorhabditis elegans. J. Cell Biol. 161, 21–26 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Munro, E., Nance, J. & Priess, J. R. Cortical flows powered by asymmetrical contraction transport PAR proteins to establish and maintain anterior–posterior polarity in the early C. elegans embryo. Dev. Cell 7, 413–424 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Grill, S. W., Gonczy, P., Stelzer, E. H. & Hyman, A. A. Polarity controls forces governing asymmetric spindle positioning in the Caenorhabditis elegans embryo. Nature 409, 630–633 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Larson, S. M. et al. Cortical mechanics and meiosis II completion in mammalian oocytes are mediated by myosin-II and Ezrin–Radixin–Moesin (ERM) proteins. Mol. Biol. Cell 15, 3182–3192 (2010).

    Google Scholar 

  16. Verdoni, A. M., Ikeda, S. & Ikeda, A. Serum response factor is essential for the proper development of skin epithelium. Mamm. Genome 21, 64–76 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Koegel, H. et al. Loss of serum response factor in keratinocytes results in hyperproliferative skin disease in mice. J. Clin. Invest. 119, 899–910 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Connelly, J. T. et al. Actin and serum response factor transduce physical cues from the microenvironment to regulate epidermal stem cell fate decisions. Nat. Cell Biol. 12, 711–718 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Posern, G. & Treisman, R. Actin’ together: serum response factor, its cofactors and the link to signal transduction. Trends Cell Biol. 16, 588–596 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Miano, J. M., Long, X. & Fujiwara, K. Serum response factor: master regulator of the actin cytoskeleton and contractile apparatus. Am. J. Physiol. Cell Physiol. 292, C70–C81 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Miano, J. M. et al. Restricted inactivation of serum response factor to the cardiovascular system. Proc. Natl Acad. Sci. USA 101, 17132–17137 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li, S. et al. Requirement for serum response factor for skeletal muscle growth and maturation revealed by tissue-specific gene deletion in mice. Proc. Natl Acad. Sci. USA 102, 1082–1087 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Alberti, S. et al. Neuronal migration in the murine rostral migratory stream requires serum response factor. Proc. Natl Acad. Sci. USA 102, 6148–6153 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Franco, C. A. et al. Serum response factor is required for sprouting angiogenesis and vascular integrity. Dev. Cell 15, 448–461 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Medjkane, S., Perez-Sanchez, C., Gaggioli, C., Sahai, E. & Treisman, R. Myocardin-related transcription factors and SRF are required for cytoskeletal dynamics and experimental metastasis. Nat. Cell Biol. 11, 257–268 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vasioukhin, V., Degenstein, L., Wise, B. & Fuchs, E. The magical touch: genome targeting in epidermal stem cells induced by tamoxifen application to mouse skin. Proc. Natl Acad. Sci. USA 96, 8551–8556 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fuchs, E. & Green, H. Changes in keratin gene expression during terminal differentiation of the keratinocyte. Cell 19, 1033–1042 (1980).

    Article  CAS  PubMed  Google Scholar 

  28. Coulombe, P. A., Kerns, M. L. & Fuchs, E. Epidermolysis bullosa simplex: a paradigm for disorders of tissue fragility. J. Clin. Invest. 119, 1784–1793 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Watt, F. M., Estrach, S. & Ambler, C. A. Epidermal Notch signalling: differentiation, cancer and adhesion. Curr. Opin. Cell Biol. 20, 171–179 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rangarajan, A. et al. Notch signalling is a direct determinant of keratinocyte growth arrest and entry into differentiation. EMBO J. 20, 3427–3436 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Demehri, S. & Kopan, R. Notch signaling in bulge stem cells is not required for selection of hair follicle fate. Development 136, 891–896 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Blanpain, C., Lowry, W. E., Pasolli, H. A. & Fuchs, E. Canonical Notch signaling functions as a commitment switch in the epidermal lineage. Genes Dev. 20, 3022–3035 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Moriyama, M. et al. Multiple roles of Notch signaling in the regulation of epidermal development. Dev. Cell 14, 594–604 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Huang da, W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).

    Article  PubMed  Google Scholar 

  35. Sun, Q. et al. Defining the mammalian CArGome. Genome Res. 16, 197–207 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Huang, Q. Q. et al. Role of H2-calponin in regulating macrophage motility and phagocytosis. J. Biol. Chem. 283, 25887–25899 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hossain, M. M., Smith, P. G., Wu, K. & Jin, J. P. Cytoskeletal tension regulates both expression and degradation of h2-calponin in lung alveolar cells. Biochemistry 45, 15670–15683 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Hossain, M. M., Crish, J. F., Eckert, R. L., Lin, J. J. & Jin, J. P. h2-Calponin is regulated by mechanical tension and modifies the function of actin cytoskeleton. J. Biol. Chem. 280, 42442–42453 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Feng, Y. & Walsh, C. A. The many faces of filamin: a versatile molecular scaffold for cell motility and signalling. Nat. Cell Biol. 6, 1034–1038 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Fujibuchi, T. et al. AIP1/WDR1 supports mitotic cell rounding. Biochem. Biophys. Res. Commun. 327, 268–275 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Fang, M. et al. Evidence of EGR1 as a differentially expressed gene among proliferative skin diseases. Genomic. Med. 1, 75–85 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kumbrink, J., Kirsch, K. H. & Johnson, J. P. EGR1, EGR2, and EGR3 activate the expression of their coregulator NAB2 establishing a negative feedback loop in cells of neuroectodermal and epithelial origin. J. Cell Biochem. 111, 207–217 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kubosaki, A. et al. Genome-wide investigation of in vivo EGR-1 binding sites in monocytic differentiation. Genome Biol. 10, R41 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Thyss, R. et al. NF-κB/Egr-1/Gadd45 are sequentially activated upon UVB irradiation to mediate epidermal cell death. EMBO J. 24, 128–137 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Thery, M. & Bornens, M. Get round and stiff for mitosis. Hfsp J. 2, 65–71 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Morton, W. M., Ayscough, K. R. & McLaughlin, P. J. Latrunculin alters the actin-monomer subunit interface to prevent polymerization. Nat. Cell Biol. 2, 376–378 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Ayscough, K. R. et al. High rates of actin filament turnover in budding yeast and roles for actin in establishment and maintenance of cell polarity revealed using the actin inhibitor latrunculin-A. J. Cell Biol. 137, 399–416 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Siller, K. H. & Doe, C. Q. Spindle orientation during asymmetric cell division. Nat. Cell Biol. 11, 365–374 (2009).

    CAS  PubMed  Google Scholar 

  49. Neumuller, R. A. & Knoblich, J. A. Dividing cellular asymmetry: asymmetric cell division and its implications for stem cells and cancer. Genes Dev. 23, 2675–2699 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Zheng, Z. et al. LGN regulates mitotic spindle orientation during epithelial morphogenesis. J. Cell Biol. 19, 275–288 (2010).

    Article  Google Scholar 

  51. Morin, X., Jaouen, F. & Durbec, P. Control of planar divisions by the G-protein regulator LGN maintains progenitors in the chick neuroepithelium. Nat. Neurosci. 10, 1440–1448 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Konno, D. et al. Neuroepithelial progenitors undergo LGN-dependent planar divisions to maintain self-renewability during mammalian neurogenesis. Nat. Cell Biol. 10, 93–101 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Bubb, M. R., Senderowicz, A. M., Sausville, E. A., Duncan, K. L. & Korn, E. D. Jasplakinolide, a cytotoxic natural product, induces actin polymerization and competitively inhibits the binding of phalloidin to F-actin. J. Biol. Chem. 269, 14869–14871 (1994).

    CAS  PubMed  Google Scholar 

  54. Straight, A. F. et al. Dissecting temporal and spatial control of cytokinesis with a myosin II inhibitor. Science 299, 1743–1747 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Effler, J. C. et al. Mitosis-specific mechanosensing and contractile-protein redistribution control cell shape. Curr. Biol. 16, 1962–1967 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cabernard, C., Prehoda, K. E. & Doe, C. Q. A spindle-independent cleavage furrow positioning pathway. Nature 467, 91–94 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Knoblich, J. A. Mechanisms of asymmetric stem cell division. Cell 132, 583–597 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Ou, G. et al. Polarized myosin produces unequal-size daughters during asymmetric cell division. Science 330, 677–680 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Li, R. & Gundersen, G. G. Beyond polymer polarity: how the cytoskeleton builds a polarized cell. Nat. Rev. Mol. Cell Biol. 9, 860–873 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Chai, J. & Tarnawski, A. S. Serum response factor: discovery, biochemistry, biological roles and implications for tissue injury healing. J. Physiol. Pharmacol. 53, 147–157 (2002).

    CAS  PubMed  Google Scholar 

  61. Srinivas, S. et al. Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev. Biol. 1, 4 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Vasioukhin, V. & Fuchs, E. Actin dynamics and cell–cell adhesion in epithelia. Curr. Opin. Cell Biol. 13, 76–84 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Beronja, S., Livshits, G., Williams, S. & Fuchs, E. Rapid functional dissection of genetic networks via tissue-specific transduction and RNAi in mouse embryos. Nat. Med. 16, 821–827 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the RU Facilities for Bioimaging (A. North) and FACS (S. Mazel) staff for their technical support; we thank N. Stokes for her assistance in the mouse facility and the Comparative Biology Center (CBC) staff for their help in veterinary care and health of our mice. We are grateful to E. Ezratty, S. Beronja, A. R. Folgueras, M. Nikolova and other members of the Fuchs laboratory for helpful discussions, critical reading of the manuscript and experimental assistance. C.L. is a Tri-Institutional Starr Stem Cell Scholars Posdoctoral Fellow. S.E.W. is an American Cancer Society Postdoctoral Fellow. Work in the Fuchs laboratory was supported by a grant from the National Institutes of Health (E.F. R01AR27883).

Author information

Authors and Affiliations

Authors

Contributions

C.L. and H.A.P. carried out the experiments and analysed the raw data. S.E.W. contributed reagents and experimental suggestions. C.L. and E.F. wrote the manuscript. E.F. supervised the project.

Corresponding author

Correspondence to Elaine Fuchs.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2505 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luxenburg, C., Amalia Pasolli, H., Williams, S. et al. Developmental roles for Srf, cortical cytoskeleton and cell shape in epidermal spindle orientation. Nat Cell Biol 13, 203–214 (2011). https://doi.org/10.1038/ncb2163

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2163

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing