Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Deubiquitylase HAUSP stabilizes REST and promotes maintenance of neural progenitor cells

Abstract

The repressor element 1-silencing transcription factor (REST) functions as a master regulator to maintain neural stem/progenitor cells (NPCs). REST undergoes proteasomal degradation through β-TrCP-mediated ubiquitylation during neuronal differentiation. However, reciprocal mechanisms that stabilize REST in NPCs are undefined. Here we show that the deubiquitylase HAUSP counterbalances REST ubiquitylation and prevents NPC differentiation. HAUSP expression declines concordantly with REST on neuronal differentiation and reciprocally with β-TrCP levels. HAUSP knockdown in NPCs decreases REST and induces differentiation. In contrast, HAUSP overexpression upregulates REST by overriding β-TrCP-mediated ubiquitylation. A consensus site (310-PYSS-313) in human REST is required for HAUSP-mediated REST deubiquitylation. Furthermore, REST overexpression in NPCs rescues the differentiation phenotype induced by HAUSP knockdown. These data demonstrate that HAUSP stabilizes REST through deubiquitylation and antagonizes β-TrCP in regulating REST at the post-translational level. Thus, HAUSP-mediated deubiquitylation represents a critical regulatory mechanism involved in the maintenance of NPCs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: HAUSP and REST protein levels decline coordinately during neuronal differentiation.
Figure 2: HAUSP knockdown reduces REST protein levels in NPCs.
Figure 3: HAUSP knockdown promotes neural differentiation and decreases NPC self-renewal, and REST overexpression rescues the differentiation phenotype induced by HAUSP knockdown.
Figure 4: rtPCR analysis indicated that reduced HAUSP expression by shRNA did not significantly alter REST mRNA expression, but increased TUJ1 (a REST target gene) mRNA levels.
Figure 5: HAUSP mediates REST deubiquitylation to regulate REST protein levels.
Figure 6: Neuronal differentiation induced by knockdown of endogenous HAUSP was rescued by ectopic expression of wild-type HAUSP, but not the catalytic dead HAUSP mutant.
Figure 7: A consensus site of human REST (310-PYSS-313) is required for the HAUSP-mediated REST deubiquitylation and HAUSP counteracts β-TrCP-mediated REST ubiquitylation.
Figure 8: ‘Ying–Yang’ control model of REST protein at the post-translational level.

Similar content being viewed by others

References

  1. Chong, J. A. et al. REST: A mammalian silencer protein that restricts sodium channel gene expression to neurons. Cell 80, 949–957 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Schoenherr, C. J. & Anderson, D. J. The neuron-restrictive silencer factor (NRSF): a coordinate repressor of multiple neuron-specific genes. Science 267, 1360–1363 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Ballas, N., Grunseich, C., Lu, D. D., Speh, J. C. & Mandel, G. REST and its corepressors mediate plasticity of neuronal gene chromatin throughout neurogenesis. Cell 121, 645–657 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Abrajano, J. J. et al. Differential deployment of REST and CoREST promotes glial subtypes specification and oligodendrocyte lineage maturation. PLoS One 4, e7665 (2010).

    Article  Google Scholar 

  5. Westbrook, T. F. et al. SCFβ-TRCP controls oncogenic transformation and neural differentiation through REST degradation. Nature 452, 370–374 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Guardavaccaro, D. et al. Control of chromosome stability by the β-TrCP-REST-Mad2 axis. Nature 452, 365–369 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ballas, N. & Mandel, G. The many faces of REST oversee epigenetic programming of neuronal genes. Curr. Opin. Neurobiol. 15, 500–506 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Johnson, R. et al. REST regulates distinct transcriptional networks in embryonic and neural stem cells. PLoS Biol. 6, 2205–2219 (2008).

    CAS  Google Scholar 

  9. Zuccato, C. et al. Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes. Nat. Genet. 35, 76–83 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Lepagnol-Bestel, A. M. et al. Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes. Hum. Mol. Genet. 18, 1405–1414 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Tahiliani, M. et al. The histone H3K4 demethylase SMCX links REST target genes to X-linked mental retardation. Nature 447, 601–605 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Canzonetta, C. et al. DYRK1A-dosage imbalance perturbs NRSF/REST levels, deregulating pluripotency and embryonic stem cell fate in Down syndrome. Am. J. Hum. Genet. 83, 388–400 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lawinger, P. et al. The neuronal repressor REST/NRSF is an essential regulator in medulloblastoma cells. Nat. Med. 6, 826–831 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Su, X. et al. Abnormal expression of REST/NRSF and Myc in neural stem/progenitor cells causes cerebellar tumors by blocking neuronal differentiation. Mol. Cell Biol. 26, 1666–1678 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fuller, G. N. et al. Many human medulloblastoma tumors overexpress repressor element-1 silencing transcription (REST)/neuron-restrictive silencer factor, which can be functionally countered by REST-VP16. Mol. Cancer Ther. 4, 343–349 (2005).

    CAS  PubMed  Google Scholar 

  16. Westbrook, T. et al. A genetic screen for candidate tumor suppressors identifies REST. Cell 121, 837–848 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Holowaty, M. N. et al. Protein profiling with Epstein-Barr nuclear antigen-1 reveals an interaction with the herpesvirus-associated ubiquitin-specific protease HAUSP/USP7. J. Biol. Chem. 278, 29987–29994 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Boutell, C., Canning, M., Orr, A. & Everett, R. D. Reciprocal activities between herpes simplex virus type 1 regulatory protein ICP0, a ubiquitin E3 ligase, and ubiquitin-specific protease USP7. J. Virol. 79, 12342–12354 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Andres, M. E. et al. CoREST: a functional corepressor required for regulation of neural-specific gene expression. Proc. Natl Acad. Sci. USA 96, 9873–9878 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Van der Horst, A. et al. FOXO4 transcriptional activity is regulated by monoubiquitination and USP7/HAUSP. Nat. Cell Biol. 8, 1064–1073 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Sheng, Y. et al. Molecular recognition of p53 and MDM2 by USP7/HAUSP. Nat. Struct. Mol. Biol. 13, 285–291 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Saridakis, V. et al. Structure of the p53 binding domain of HAUSP/USP7 bound to Epstein-Barr nuclear antigen 1 implications for EBV-mediated immortalization. Mol. Cell 18, 25–36 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Li, M., Brooks, C. L., Kon, N. & Gu, W. A dynamic role of HAUSP in the p53-Mdm2 pathway. Mol. Cell 13, 879–886 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Cummins, J. M. et al. Tumour suppression: disruption of HAUSP gene stabilizes p53. Nature 428, 6982 (2004).

    Article  Google Scholar 

  25. Song, M. S. et al. The deubiquitinylation and localization of PTEN are regulated by a HAUSP-PML network. Nature 455, 813–817 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jorgensen, H. F. et al. REST selectively represses a subset of RE1-containing neuronal genes in mouse embryonic stem cells. Development 136, 715–721 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen, Z. F., Paquette, A. J. & Anderson, D. J. NRSF/REST is required in vivo for repression of multiple neuronal target genes during embryogenesis. Nat. Genet. 20, 136–142 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Singh, S. K., Kagalwala, M. N., Parker-Thornburg, J., Adams, H. & Majumder, S. REST maintains self-renewal and pluripotency of embryonic stem cells. Nature 453, 223–227 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Buckley, N. J., Johnson, R., Sun, Y. M. & Stanton, L. W. Is REST a regulator of pluripotency? Nature 457, E5–E6 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Yamada, Y., Aoki, H., Kunisada, T. & Hara, A. Rest promotes the early differentiation of mouse ESCs but is not required for their maintenance. Cell Stem Cell 6, 10–15 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Zhang, P. et al. Nontelomeric TRF2-REST interaction modulates neuronal gene silencing and fate of tumor and stem cells. Curr. Biol. 18, 1489–1494 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bao, S. et al. Cancer stem cells promote radioresistance of malignant glioma through preferential activation of DNA damage checkpoint and repair. Nature 444, 756–760 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Bao, S. et al. Targeting cancer stem cells through L1CAM suppresses glioma growth. Cancer Res. 68, 6043–6048 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li, Z. et al. Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell 15, 501–513 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members in the J.N.R. lab for helpful discussions and suggestions. We are also grateful to the Flow Cytometry Core, Imaging Core and Central Cell Services at Cleveland Clinic Lerner Research Institute for their help and services. This work was supported by a research fund from Cleveland Clinic Foundation and a NIH grant (NS070315) to S.B.

Author information

Authors and Affiliations

Authors

Contributions

Z.H., Q.W., O.A.G. and L.C. carried out and planned all experiments. S.B. developed the hypothesis, coordinated the study, oversaw the research and results, and wrote the manuscript. J.N.R. helped to write the manuscript and provided input into design and interpretation. W.S. provided reagents and helpful suggestions. The work was carried out in the laboratory of S.B.

Corresponding author

Correspondence to Shideng Bao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1969 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Z., Wu, Q., Guryanova, O. et al. Deubiquitylase HAUSP stabilizes REST and promotes maintenance of neural progenitor cells. Nat Cell Biol 13, 142–152 (2011). https://doi.org/10.1038/ncb2153

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2153

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing