LIF-independent JAK signalling to chromatin in embryonic stem cells uncovered from an adult stem cell disease


Activating mutations in the tyrosine kinase Janus kinase 2 (JAK2) cause myeloproliferative neoplasms, clonal blood stem cell disorders with a propensity for leukaemic transformation. Leukaemia inhibitory factor (LIF) signalling through the JAK-signal transducer and activator of transcription (STAT) pathway enables self-renewal of embryonic stem (ES) cells. Here we show that mouse ES cells carrying the human JAK2V617F mutation were able to self-renew in chemically defined conditions without cytokines or small-molecule inhibitors, independently of JAK signalling through the STAT3 or phosphatidylinositol-3-OH kinase pathways. Phosphorylation of histone H3 tyrosine 41 (H3Y41) by JAK2 was recently shown to interfere with binding of heterochromatin protein 1α (HP1α). Levels of chromatin-bound HP1α were lower in JAK2V617F ES cells but increased following inhibition of JAK2, coincident with a global reduction in histone H3Y41 phosphorylation. JAK2 inhibition reduced levels of the pluripotency regulator Nanog, with a reduction in H3Y41 phosphorylation and concomitant increase in HP1α levels at the Nanog promoter. Furthermore, Nanog was required for factor independence of JAK2V617F ES cells. Taken together, these results uncover a previously unrecognized role for direct signalling to chromatin by JAK2 as an important mediator of ES cell self-renewal.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: JAK2V617F sustains ES cells in a self-renewing state without any additional factors.
Figure 2: Factor-independent JAK2V617 ES cells are capable of multilineage differentiation in vitro and in vivo.
Figure 3: JAK2V617F does not activate canonical signalling pathways independently of cytokines, but JAK is required for ES cell self-renewal.
Figure 4: JAK2 is present in the nucleus of ES cells and dynamically regulates HP1α access to chromatin by phosphorylating histone H3Y41.
Figure 5: JAK2 regulates H3Y41ph at the Nanog promoter and Nanog is critical for factor-independent self-renewal.
Figure 6: JAK2 is not the only JAK that can phosphorylate H3Y41.

Accession codes




  1. 1

    Campbell, P. J. & Green, A. R. The myeloproliferative disorders. N. Engl. J. Med. 355, 2452–2466 (2006).

    CAS  Article  Google Scholar 

  2. 2

    Levine, R. L. & Gilliland, D. G. Myeloproliferative disorders. Blood 112, 2190–2198 (2008).

    CAS  Article  Google Scholar 

  3. 3

    James, C. et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 434, 1144–1148 (2005).

    CAS  Article  Google Scholar 

  4. 4

    Levine, R. L. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 7, 387–397 (2005).

    CAS  Article  Google Scholar 

  5. 5

    Baxter, E. J. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 365, 1054–1061 (2005).

    CAS  Article  Google Scholar 

  6. 6

    Kralovics, R. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N. Engl. J. Med. 352, 1779–1790 (2005).

    CAS  Article  Google Scholar 

  7. 7

    Moreau, J. Leukaemia inhibitory factor is identical to the myeloid growth factor human interleukin for DA cells. Nature 336, 690–692 (1988).

    CAS  Article  Google Scholar 

  8. 8

    Smith, A. G. Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature 336, 688–690 (1988).

    CAS  Article  Google Scholar 

  9. 9

    Williams, R. L. Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature 336, 684–687 (1988).

    CAS  Article  Google Scholar 

  10. 10

    Niwa, H., Burdon, T., Chambers, I. & Smith, A. Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev. 12, 2048–2060 (1998).

    CAS  Article  Google Scholar 

  11. 11

    Raz, R., Lee, C., Cannizzaro, L. A., d'Eustachio, P. & Levy, D. E. Essential role of STAT3 for embryonic stem cell pluripotency. Proc. Natl Acad. Sci. USA 96, 2846–2851 (1999).

    CAS  Article  Google Scholar 

  12. 12

    Ying, Q. L., Nichols, J., Chambers, I. & Smith, A. BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115, 281–92 (2003).

    CAS  Article  Google Scholar 

  13. 13

    Ying, Q. The ground state of embryonic stem cell self-renewal. Nature 453, 519–523 (2008).

    CAS  Article  Google Scholar 

  14. 14

    Dawson, M. A. JAK2 phosphorylates histone H3Y41 and excludes HP1alpha from chromatin. Nature 461, 819–822 (2009).

    CAS  Article  Google Scholar 

  15. 15

    Li, J. JAK2 V617F impairs hematopoietic stem cell function in a conditional knock-in mouse model of JAK2 V617F-positive essential thrombocythemia. Blood 116, 1528–1538 (2010).

    CAS  Article  Google Scholar 

  16. 16

    Prchal, J. F. & Axelrad, A. A. Bone-marrow responses in polycythemia vera. N. Engl. J. Med. 290, 1382 (1974).

    CAS  PubMed  Google Scholar 

  17. 17

    Ohashi, T., Masuda, M. & Ruscetti, S. K. Induction of sequence-specific DNA-binding factors by erythropoietin and the spleen focus-forming virus. Blood 85, 1454–1462 (1995).

    CAS  PubMed  Google Scholar 

  18. 18

    Schneider, H., Cohen-Dayag, A. & Pecht, I. Tyrosine phosphorylation of phospholipase C gamma 1 couples the Fc epsilon receptor mediated signal to mast cells secretion. Int. Immunol. 4, 447–453 (1992).

    CAS  Article  Google Scholar 

  19. 19

    Thompson, J. E. Photochemical preparation of a pyridone containing tetracycle: a Jak protein kinase inhibitor. Bioorg. Med. Chem. Lett. 12, 1219–1223 (2002).

    CAS  Article  Google Scholar 

  20. 20

    Pardanani, A. TG101209, a small molecule JAK2-selective kinase inhibitor potently inhibits myeloproliferative disorder-associated JAK2V617F and MPLW515L/K mutations. Leukemia 21, 1658–1668 (2007).

    CAS  Article  Google Scholar 

  21. 21

    Ihle, J. N. STATs: Signal Transducers and Activators of Transcription. Cell 84, 331–334 (1996).

    CAS  Article  Google Scholar 

  22. 22

    Niwa, H., Ogawa, K., Shimosato, D. & Adachi, K. A parallel circuit of LIF signalling pathways maintains pluripotency of mouse ES cells. Nature 460, 118–122 (2009).

    CAS  Article  Google Scholar 

  23. 23

    Matsuda, T. STAT3 activation is sufficient to maintain an undifferentiated state of mouse embryonic stem cells. EMBO J. 18, 4261–4269 (1999).

    CAS  Article  Google Scholar 

  24. 24

    Grebien, F. Stat5 activation enables erythropoiesis in the absence of EpoR and Jak2. Blood 111, 4511–4522 (2008).

    CAS  Article  Google Scholar 

  25. 25

    Wood, A. D. Id1 promotes expansion and survival of primary erythroid cells and is a target of JAK2V617F-STAT5 signalling. Blood 114, 1820–1830 (2009).

    CAS  Article  Google Scholar 

  26. 26

    Paling, N. R.D., Wheadon, H., Bone, H. K. & Welham, M. J. Regulation of embryonic stem cell self-renewal by phosphoinositide 3-kinase-dependent signaling. J. Biol. Chem. 279, 48063–48070 (2004).

    CAS  Article  Google Scholar 

  27. 27

    Stavridis, M. P., Lunn, J. S., Collins, B. J. & Storey, K. G. A discrete period of FGF-induced Erk1/2 signalling is required for vertebrate neural specification. Development 134, 2889–2894 (2007).

    CAS  Article  Google Scholar 

  28. 28

    Kunath, T. FGF stimulation of the Erk1/2 signalling cascade triggers transition of pluripotent embryonic stem cells from self-renewal to lineage commitment. Development 134, 2895–2902 (2007).

    CAS  Article  Google Scholar 

  29. 29

    Lu, C. Ras-MAPK signaling promotes trophectoderm formation from embryonic stem cells and mouse embryos. Nat. Genet 40, 921–926 (2008).

    CAS  Article  Google Scholar 

  30. 30

    Burdon, T., Stracey, C., Chambers, I., Nichols, J. & Smith, A. Suppression of SHP-2 and ERK signalling promotes self-renewal of mouse embryonic stem cells. Dev. Biol. 210, 30–43 (1999).

    CAS  Article  Google Scholar 

  31. 31

    Shi, S. JAK signaling globally counteracts heterochromatic gene silencing. Nat. Genet 38, 1071–1076 (2006).

    CAS  Article  Google Scholar 

  32. 32

    Shi, S. Drosophila STAT is required for directly maintaining HP1 localization and heterochromatin stability. Nat. Cell Biol. 10, 489–496 (2008).

    CAS  Article  Google Scholar 

  33. 33

    Chambers, I. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113, 643–655 (2003).

    CAS  Article  Google Scholar 

  34. 34

    Ivanova, N. Dissecting self-renewal in stem cells with RNA interference. Nature 442, 533–538 (2006).

    CAS  Article  Google Scholar 

  35. 35

    Nielsen, S. J. Rb targets histone H3 methylation and HP1 to promoters. Nature 412, 561–565 (2001).

    CAS  Article  Google Scholar 

  36. 36

    Papanayotou, C. A mechanism regulating the onset of Sox2 expression in the embryonic neural plate. PLoS Biol. 6, e2 (2008).

    Article  Google Scholar 

  37. 37

    Neubauer, H. Jak2 deficiency defines an essential developmental checkpoint in definitive hematopoiesis. Cell 93, 397–409 (1998).

    CAS  Article  Google Scholar 

  38. 38

    Rodig, S. J. Disruption of the Jak1 gene demonstrates obligatory and nonredundant roles of the Jaks in cytokine-induced biologic responses. Cell 93, 373–383 (1998).

    CAS  Article  Google Scholar 

  39. 39

    Parganas, E. Jak2 is essential for signaling through a variety of cytokine receptors. Cell 93, 385–395 (1998).

    CAS  Article  Google Scholar 

  40. 40

    Ernst, M., Oates, A. & Dunn, A. R. gp130-mediated signal transduction in embryonic stem cells involves activation of Jak and Ras/mitogen-activated protein kinase pathways. J. Biol. Chem. 271, 30136–30143 (1996).

    CAS  Article  Google Scholar 

  41. 41

    Yuan, P. Eset partners with Oct4 to restrict extraembryonic trophoblast lineage potential in embryonic stem cells. Genes Dev. 23, 2507–2520 (2009).

    CAS  Article  Google Scholar 

  42. 42

    Bilodeau, S., Kagey, M. H., Frampton, G. M., Rahl, P. B. & Young, R. A. SetDB1 contributes to repression of genes encoding developmental regulators and maintenance of ES cell state. Genes Dev. 23, 2484–2489 (2009).

    CAS  Article  Google Scholar 

  43. 43

    Meissner, A. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454, 766–770 (2008).

    CAS  Article  Google Scholar 

  44. 44

    Mikkelsen, T. S. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553–560 (2007).

    CAS  Article  Google Scholar 

  45. 45

    Hodge, D. R., Hurt, E. M. & Farrar, W. L. The role of IL-6 and STAT3 in inflammation and cancer. Eur. J. Cancer 41, 2502–2512 (2005).

    CAS  Article  Google Scholar 

  46. 46

    Tchirkov, A. Interleukin-6 gene amplification and shortened survival in glioblastoma patients. Br. J. Cancer 96, 474–476 (2007).

    CAS  Article  Google Scholar 

  47. 47

    Rebouissou, S. Frequent in-frame somatic deletions activate gp130 in inflammatory hepatocellular tumours. Nature 457, 200–204 (2009).

    CAS  Article  Google Scholar 

  48. 48

    Ying, Q. & Smith, A. G. Defined conditions for neural commitment and differentiation. Meth. Enzymol. 365, 327–341 (2003).

    CAS  Article  Google Scholar 

  49. 49

    Brewer, G. J., Torricelli, J. R., Evege, E. K. & Price, P. J. Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J. Neurosci. Res. 35, 567–576 (1993).

    CAS  Article  Google Scholar 

  50. 50

    Liu, P., Jenkins, N. A. & Copeland, N. G. A highly efficient recombineering-based method for generating conditional knockout mutations. Genome Res. 13, 476–484 (2003).

    CAS  Article  Google Scholar 

  51. 51

    Subramanian, A. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550 (2005).

    CAS  Article  Google Scholar 

  52. 52

    Ying, Q., Stavridis, M., Griffiths, D., Li, M. & Smith, A. Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nat. Biotechnol. 21, 183–186 (2003).

    CAS  Article  Google Scholar 

  53. 53

    Batlle-Morera, L., Smith, A. & Nichols, J. Parameters influencing derivation of embryonic stem cells from murine embryos. Genesis 46, 758–767 (2008).

    Article  Google Scholar 

Download references


We gratefully acknowledge the assistance of S. Kinston for technical support, M. Anderson and T. Hamilton for 8-cell-stage injections, K. Griffiths and A. Johnston for assistance with statistics, N. Ivanova for the Nanog shRNA vector, S. Pollard for use of Incucyte, A. Smith for STAT3-null and Nanog-overexpressing ES cells and for helpful discussions and A. Bradley for helpful discussions. Research in the authors' laboratories is supported by Cancer Research UK, Leukaemia and Lymphoma Research, The Leukaemia and Lymphoma Society and Medical Research Council.

Author information




D.S.G. designed the experiments and performed most of the experiments. B.G. conceived the study and wrote the paper. J.L., P.L. and A.R.G. designed and made the JAK2V617F ES cells. M.A.D., A.J.B. and T.K. performed ChIPs, western for H3Y41ph and in vitro kinase assay. M.W.B.T. analysed microarray data. W.M. and J.N. generated teratocarcinomas and derived JAK2-null ES cells. Y.-H.C. and A.M.S. generated Fig. 2b. D.S.G., A.R.G and B.G. wrote the paper.

Corresponding authors

Correspondence to Dean S. Griffiths or Berthold Göttgens.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 887 kb)

Supplementary Movie 1

Supplementary Information (WMV 3987 kb)

Supplementary Movie 2

Supplementary Information (WMV 3979 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Griffiths, D., Li, J., Dawson, M. et al. LIF-independent JAK signalling to chromatin in embryonic stem cells uncovered from an adult stem cell disease. Nat Cell Biol 13, 13–21 (2011).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing