Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tissue elongation requires oscillating contractions of a basal actomyosin network

Abstract

Understanding how molecular dynamics leads to cellular behaviours that ultimately sculpt organs and tissues is a major challenge not only in basic developmental biology but also in tissue engineering and regenerative medicine. Here we use live imaging to show that the basal surfaces of Drosophila follicle cells undergo a series of directional, oscillating contractions driven by periodic myosin accumulation on a polarized actin network. Inhibition of the actomyosin contractions or their coupling to extracellular matrix (ECM) blocked elongation of the whole tissue, whereas enhancement of the contractions exaggerated it. Myosin accumulated in a periodic manner before each contraction and was regulated by the small GTPase Rho, its downstream kinase, ROCK, and cytosolic calcium. Disrupting the link between the actin cytoskeleton and the ECM decreased the amplitude and period of the contractions, whereas enhancing cell–ECM adhesion increased them. In contrast, disrupting cell–cell adhesions resulted in loss of the actin network. Our findings reveal a mechanism controlling organ shape and an experimental model for the study of the effects of oscillatory actomyosin activity within a coherent cell sheet.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stage-9 follicle cells undergo rapid periodic contractions and myosin accumulation.
Figure 2: Quantification of basal periodic contraction and comparison with apical activity.
Figure 3: Accumulation of basal myosin on stable actin filaments precedes the basal membrane contraction.
Figure 4: Global change in basal myosin during egg chamber development.
Figure 5: Basal actomyosin contractions control tissue shape.
Figure 6: Rho, ROCK and cell adhesion regulate basal myosin accumulation and organ shape.
Figure 7: Cell autonomy of myosin oscillation and pathways affecting its magnitude and period.
Figure 8: Model of tissue elongation controlled by basal actomyosin contraction.

Similar content being viewed by others

References

  1. Lecuit, T. & Lenne, P. F. Cell surface mechanics and the control of cell shape, tissue patterns and morphogenesis. Nature Rev. Mol. Cell Biol. 8, 633–644 (2007).

    Article  CAS  Google Scholar 

  2. Mammoto, T. & Ingber, D. E. Mechanical control of tissue and organ development. Development 137, 1407–1420 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Martin, A. C., Kaschube, M. & Wieschaus, E. F. Pulsed contractions of an actin–myosin network drive apical constriction. Nature 457, 495–499 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Solon, J., Kaya-Copur, A., Colombelli, J. & Brunner, D. Pulsed forces timed by a ratchet-like mechanism drive directed tissue movement during dorsal closure. Cell 137, 1331–1342 (2009).

    Article  PubMed  Google Scholar 

  5. Bertet, C., Sulak, L. & Lecuit, T. Myosin-dependent junction remodelling controls planar cell intercalation and axis elongation. Nature 429, 667–671 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Horne-Badovinac, S. & Bilder, D. Mass transit: epithelial morphogenesis in the Drosophila egg chamber. Dev. Dyn. 232, 559–574 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Wu, X., Tanwar, P. S. & Raftery, L. A. Drosophila follicle cells: morphogenesis in an eggshell. Semin. Cell Dev. Biol. 19, 271–282 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang, Y. & Riechmann, V. The role of the actomyosin cytoskeleton in coordination of tissue growth during Drosophila oogenesis. Curr. Biol. 17, 1349–1355 (2007).

    Article  PubMed  Google Scholar 

  9. Kolahi, K. S. et al. Quantitative analysis of epithelial morphogenesis in Drosophila oogenesis: new insights based on morphometric analysis and mechanical modeling. Dev. Biol. 331, 129–139 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gutzeit, H. O. The microfilament pattern in the somatic follicle cells of mid-vitellogenic ovarian follicles of Drosophila. Eur. J. Cell Biol. 53, 349–356 (1990).

    CAS  PubMed  Google Scholar 

  11. Gutzeit, H. O., Eberhardt, W. & Gratwohl, E. Laminin and basement membrane-associated microfilaments in wild type and mutant Drosophila ovarian follicles. J. Cell Sci. 100, 781–788 (1991).

    PubMed  Google Scholar 

  12. Gutzeit, H. O. Organization and in vitro activity of microfilament bundles associated with the basement membrane of Drosophila follicles. Acta Histochem. Suppl. 41, 201–210 (1991).

    CAS  PubMed  Google Scholar 

  13. Bateman, J., Reddy, R. S., Saito, H. & Van Vactor, D. The receptor tyrosine phosphatase Dlar and integrins organize actin filaments in the Drosophila follicular epithelium. Curr. Biol. 11, 1317–1327 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Prasad, M., Jang, A. C., Starz-Gaiano, M., Melani, M. & Montell, D. J. A protocol for culturing Drosophila melanogaster stage 9 egg chambers for live imaging. Nature Protocols 2, 2467–2473 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Prasad, M. & Montell, D. J. Cellular and molecular mechanisms of border cell migration analyzed using time-lapse live-cell imaging. Dev. Cell 12, 997–1005 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Oda, H. & Tsukita, S. Real-time imaging of cell–cell adherens junctions reveals that Drosophila mesoderm invagination begins with two phases of apical constriction of cells. J. Cell Sci. 114, 493–501 (2001).

    CAS  PubMed  Google Scholar 

  17. Martin, A. C. Pulsation and stabilization: contractile forces that underlie morphogenesis. Dev. Biol. 341, 114–125 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Martin, A. C., Gelbart, M., Fernandez-Gonzalez, R., Kaschube, M. & Wieschaus, E. F. Integration of contractile forces during tissue invagination. J. Cell Biol. 188, 735–749 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. David, D. J., Tishkina, A. & Harris, T. J. The PAR complex regulates pulsed actomyosin contractions during amnioserosa apical constriction in Drosophila. Development 137, 1645–1655 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Blanchard, G. B., Murugesu, S., Adams, R. J., Martinez-Arias, A. & Gorfinkiel, N. Cytoskeletal dynamics and supracellular organisation of cell shape fluctuations during dorsal closure. Development 137, 2743–2752 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Edwards, K. A., Demsky, M., Montague, R. A., Weymouth, N. & Kiehart, D. P. GFP–moesin illuminates actin cytoskeleton dynamics in living tissue and demonstrates cell shape changes during morphogenesis in Drosophila. Dev. Biol. 191, 103–117 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Uehata, M. et al. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature 389, 990–994 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Hilgers, R. H. & Webb, R. C. Molecular aspects of arterial smooth muscle contraction: focus on Rho. Exp. Biol. Med. 230, 829–835 (2005).

    Article  CAS  Google Scholar 

  24. Pellegrin, S. & Mellor, H. Actin stress fibres. J. Cell Sci. 120, 3491–3499 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Narumiya, S., Ishizaki, T. & Uehata, M. Use and properties of ROCK-specific inhibitor Y-27632. Methods Enzymol. 325, 273–284 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Frydman, H. M. & Spradling, A. C. The receptor-like tyrosine phosphatase lar is required for epithelial planar polarity and for axis determination within Drosophila ovarian follicles. Development 128, 3209–3220 (2001).

    CAS  PubMed  Google Scholar 

  27. Conder, R., Yu, H., Zahedi, B. & Harden, N. The serine/threonine kinase dPak is required for polarized assembly of F-actin bundles and apical-basal polarity in the Drosophila follicular epithelium. Dev. Biol. 305, 470–482 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Viktorinova, I., Konig, T., Schlichting, K. & Dahmann, C. The cadherin Fat2 is required for planar cell polarity in the Drosophila ovary. Development 136, 4123–4132 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Mirouse, V., Christoforou, C. P., Fritsch, C., St Johnston, D. & Ray, R. P. Dystroglycan and perlecan provide a basal cue required for epithelial polarity during energetic stress. Dev. Cell 16, 83–92 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Brown, N. H. et al. Talin is essential for integrin function in Drosophila. Dev. Cell 3, 569–579 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Conway, W. C. et al. Paxillin modulates squamous cancer cell adhesion and is important in pressure-augmented adhesion. J. Cell. Biochem. 98, 1507–1516 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Schaller, M. D. Paxillin: a focal adhesion-associated adaptor protein. Oncogene 20, 6459–6472 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Millan, J. et al. Adherens junctions connect stress fibres between adjacent endothelial cells. BMC Biol. 8, 11 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kee, Y. S. & Robinson, D. N. Motor proteins: myosin mechanosensors. Curr. Biol. 18, R860–R862 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Kovacs, M., Thirumurugan, K., Knight, P. J. & Sellers, J. R. Load-dependent mechanism of nonmuscle myosin 2. Proc. Natl Acad. Sci. USA 104, 9994–9999 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fernandez-Gonzalez, R., Simoes, S. de M., Röper, J. C., Eaton, S. & Zallen, J. A. Myosin II dynamics are regulated by tension in intercalating cells. Dev. Cell 17, 736–743 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ren, Y. et al. Mechanosensing through cooperative interactions between myosin II and the actin crosslinker cortexillin I. Curr. Biol. 19, 1421–1428 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ewald, A. J., Brenot, A., Duong, M., Chan, B. S. & Werb, Z. Collective epithelial migration and cell rearrangements drive mammary branching morphogenesis. Dev. Cell 14, 570–581 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dietzl, G. et al. A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448, 151–166 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Delon, I. & Brown, N. H. The integrin adhesion complex changes its composition and function during morphogenesis of an epithelium. J. Cell Sci. 122, 4363–4374 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Vincent, L. & Soille, P. Watersheds in digital spaces—an efficient algorithm based on immersion simulations. IEEE Trans. Pattern Anal. Machine Intell. 13, 583–598 (1991).

    Article  Google Scholar 

  42. McDonald, J. A. & Montell, D. J. Analysis of cell migration using Drosophila as a model system. Methods Mol. Biol. 294, 175–202 (2005).

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank Doug Robinson for invaluable discussions, critical reading of the manuscript and help with writing the discussion of the myosin oscillation mechanism. Nick Brown and Eric Wieschaus generously donated reagents. This work was supported by grants to D.J.M. from the National Institute of General Medical Sciences including R01 GM46425, GM73164 and the Cell Migration Consortium. Bloomington Drosophila Stock Center and Vienna Drosophila RNAi Center resources contributed to this work. FlyBase provided important information used in this work. Clones provided by the Berkeley Drosophila Genome Project and distributed by Drosophila Genetic Resource Center were used.

Author information

Authors and Affiliations

Authors

Contributions

L.H. and X.W. performed the image acquisition and mutant analysis. L.H. processed and analysed images. H.L.T. conducted inhibitor treatments and calcium-related experiments. D.J.M. prepared the manuscript. All authors participated in the interpretation of the data and the production of the final manuscript.

Corresponding author

Correspondence to Denise J. Montell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1311 kb)

Supplementary Movie 1

Supplementary Information (MOV 1552 kb)

Supplementary Movie 2

Supplementary Information (MOV 4900 kb)

Supplementary Movie 3

Supplementary Information (MOV 4436 kb)

Supplementary Movie 4

Supplementary Information (MOV 3676 kb)

Supplementary Movie 5

Supplementary Information (MOV 4404 kb)

Supplementary Movie 6

Supplementary Information (MOV 9179 kb)

Supplementary Movie 7

Supplementary Information (MOV 1798 kb)

Supplementary Movie 8

Supplementary Information (MOV 2891 kb)

Supplementary Movie 9

Supplementary Information (MOV 4186 kb)

Supplementary Movie 10

Supplementary Information (MOV 2139 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, L., Wang, X., Tang, H. et al. Tissue elongation requires oscillating contractions of a basal actomyosin network. Nat Cell Biol 12, 1133–1142 (2010). https://doi.org/10.1038/ncb2124

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2124

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research