Positive feedback between p53 and TRF2 during telomere-damage signalling and cellular senescence


The telomere-capping complex shelterin protects functional telomeres and prevents the initiation of unwanted DNA-damage-response pathways. At the end of cellular replicative lifespan, uncapped telomeres lose this protective mechanism and DNA-damage signalling pathways are triggered that activate p53 and thereby induce replicative senescence. Here, we identify a signalling pathway involving p53, Siah1 (a p53-inducible E3 ubiquitin ligase) and TRF2 (telomere repeat binding factor 2; a component of the shelterin complex). Endogenous Siah1 and TRF2 were upregulated and downregulated, respectively, during replicative senescence with activated p53. Experimental manipulation of p53 expression demonstrated that p53 induces Siah1 and represses TRF2 protein levels. The p53-dependent ubiquitylation and proteasomal degradation of TRF2 are attributed to the E3 ligase activity of Siah1. Knockdown of Siah1 stabilized TRF2 and delayed the onset of cellular replicative senescence, suggesting a role for Siah1 and TRF2 in p53-regulated senescence. This study reveals that p53, a downstream effector of telomere-initiated damage signalling, also functions upstream of the shelterin complex.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Replicative cellular senescence is associated with decreased TRF2 and increased Siah1.
Figure 2: p53 upregulates Siah1 and downregulates TRF2.
Figure 3: Siah1 knockdown stabilizes TRF2.
Figure 4: TRF2 is subject to proteasomal degradation and ubiquitylated in vivo.
Figure 5: Siah1 interacts with, and ubiquitylates, TRF2.
Figure 6: Roles of Siah1 and TRF2 in cellular senescence in vitro and in vivo.


  1. 1

    Collado, M., Blasco, M. A. & Serrano, M. Cellular senescence in cancer and aging. Cell 130, 223–233 (2007).

    CAS  Article  Google Scholar 

  2. 2

    Deng, Y., Chan, S. S. & Chang, S. Telomere dysfunction and tumour suppression: the senescence connection. Nat. Rev. Cancer 8, 450–458 (2008).

    CAS  Article  Google Scholar 

  3. 3

    Begus-Nahrmann, Y. et al. p53 deletion impairs clearance of chromosomal-instable stem cells in aging telomere-dysfunctional mice. Nat. Genet. 41, 1138–1143 (2009).

    CAS  Article  Google Scholar 

  4. 4

    Cicalese, A. et al. The tumor suppressor p53 regulates polarity of self-renewing divisions in mammary stem cells. Cell 138, 1083–1095 (2009).

    CAS  Article  Google Scholar 

  5. 5

    Marion, R. M. et al. A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity. Nature 460, 1149–1153 (2009).

    CAS  Article  Google Scholar 

  6. 6

    Cosme-Blanco, W. et al. Telomere dysfunction suppresses spontaneous tumorigenesis in vivo by initiating p53-dependent cellular senescence. EMBO Rep. 8, 497–503 (2007).

    CAS  Article  Google Scholar 

  7. 7

    Feldser, D. M. & Greider, C. W. Short telomeres limit tumor progression in vivo by inducing senescence. Cancer Cell 11, 461–469 (2007).

    CAS  Article  Google Scholar 

  8. 8

    Herbig, U., Jobling, W. A., Chen, B. P., Chen, D. J. & Sedivy, J. M. Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53 and p21CIP1, but not p16INK4a. Mol. Cell 14, 501–513 (2004).

    CAS  Article  Google Scholar 

  9. 9

    Ju, Z. et al. Telomere dysfunction induces environmental alterations limiting hematopoietic stem cell function and engraftment. Nat. Med. 13, 742–747 (2007).

    CAS  Article  Google Scholar 

  10. 10

    Nalapareddy, K., Jiang, H., Guachalla Gutierrez, L. M. & Rudolph, K. L. Determining the influence of telomere dysfunction and DNA damage on stem and progenitor cell aging: what markers can we use? Exp. Gerontol. 43, 998–1004 (2008).

    CAS  Article  Google Scholar 

  11. 11

    Marion, R. M. et al. Telomeres acquire embryonic stem cell characteristics in induced pluripotent stem cells. Cell Stem Cell 4, 141–154 (2009).

    CAS  Article  Google Scholar 

  12. 12

    van Steensel, B., Smogorzewska, A. & de Lange, T. TRF2 protects human telomeres from end-to-end fusions. Cell 92, 401–413 (1998).

    CAS  Article  Google Scholar 

  13. 13

    de Lange, T. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev. 19, 2100–2110 (2005).

    CAS  Article  Google Scholar 

  14. 14

    Stansel, R. M., de Lange, T. & Griffith, J. D. T-loop assembly in vitro involves binding of TRF2 near the 3′ telomeric overhang. EMBO J. 20, 5532–5540 (2001).

    CAS  Article  Google Scholar 

  15. 15

    Denchi, E. L. & de Lange, T. Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1. Nature 448, 1068–1071 (2007).

    CAS  Article  Google Scholar 

  16. 16

    Lechel, A. et al. The cellular level of telomere dysfunction determines induction of senescence or apoptosis in vivo. EMBO Rep. 6, 275–281 (2005).

    CAS  Article  Google Scholar 

  17. 17

    Stagno D'Alcontres, M., Mendez-Bermudez, A., Foxon, J. L., Royle, N. J. & Salomoni, P. Lack of TRF2 in ALT cells causes PML-dependent p53 activation and loss of telomeric DNA. J. Cell Biol. 179, 855–867 (2007).

    Article  Google Scholar 

  18. 18

    Buscemi, G. et al. The shelterin protein TRF2 inhibits Chk2 activity at telomeres in the absence of DNA damage. Curr. Biol. 19, 874–879 (2009).

    CAS  Article  Google Scholar 

  19. 19

    Bilaud, T. et al. Telomeric localization of TRF2, a novel human telobox protein. Nat. Genet. 17, 236–239 (1997).

    CAS  Article  Google Scholar 

  20. 20

    Zhu, X. D., Kuster, B., Mann, M., Petrini, J. H. & de Lange, T. Cell-cycle-regulated association of RAD50/MRE11/NBS1 with TRF2 and human telomeres. Nat. Genet. 25, 347–352 (2000).

    CAS  Article  Google Scholar 

  21. 21

    d'Adda di Fagagna, F. et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature 426, 194–198 (2003).

    CAS  Article  Google Scholar 

  22. 22

    Stewart, S. A. et al. Erosion of the telomeric single-strand overhang at replicative senescence. Nat. Genet. 33, 492–496 (2003).

    CAS  Article  Google Scholar 

  23. 23

    Fujita, K. et al. p53 isoforms Δ133p53 and p53β are endogenous regulators of replicative cellular senescence. Nat. Cell Biol. 11, 1135–1142 (2009).

    CAS  Article  Google Scholar 

  24. 24

    Matsuzawa, S. I. & Reed, J. C. Siah-1, SIP and Ebi collaborate in a novel pathway for β-catenin degradation linked to p53 responses. Mol. Cell 7, 915–926 (2001).

    CAS  Article  Google Scholar 

  25. 25

    Tanikawa, J. et al. p53 suppresses the c-Myb-induced activation of heat shock transcription factor 3. J. Biol. Chem. 275, 15578–15585 (2000).

    CAS  Article  Google Scholar 

  26. 26

    Bourdon, J. C. et al. p53 isoforms can regulate p53 transcriptional activity. Genes Dev. 19, 2122–2137 (2005).

    CAS  Article  Google Scholar 

  27. 27

    Hu, G. & Fearon, E. R. Siah-1 N-terminal RING domain is required for proteolysis function, and C-terminal sequences regulate oligomerization and binding to target proteins. Mol. Cell. Biol. 19, 724–732 (1999).

    CAS  Article  Google Scholar 

  28. 28

    Rodriguez, M. S., Desterro, J. M., Lain, S., Lane, D. P. & Hay, R. T. Multiple C-terminal lysine residues target p53 for ubiquitin-proteasome-mediated degradation. Mol. Cell. Biol. 20, 8458–8467 (2000).

    CAS  Article  Google Scholar 

  29. 29

    Katoh, S. et al. High precision NMR structure and function of the RING-H2 finger domain of EL5, a rice protein whose expression is increased upon exposure to pathogen-derived oligosaccharides. J. Biol. Chem. 278, 15341–15348 (2003).

    CAS  Article  Google Scholar 

  30. 30

    Lorick, K. L. et al. RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proc. Natl Acad. Sci. USA 96, 11364–11369 (1999).

    CAS  Article  Google Scholar 

  31. 31

    Karlseder, J., Smogorzewska, A. & de Lange, T. Senescence induced by altered telomere state, not telomere loss. Science 295, 2446–2449 (2002).

    CAS  Article  Google Scholar 

  32. 32

    Jacobs, J. J. & de Lange, T. Significant role for p16INK4a in p53-independent telomere-directed senescence. Curr. Biol. 14, 2302–2308 (2004).

    CAS  Article  Google Scholar 

  33. 33

    Smogorzewska, A. & de Lange, T. Different telomere damage signaling pathways in human and mouse cells. EMBO J. 21, 4338–4348 (2002).

    CAS  Article  Google Scholar 

  34. 34

    Collado, M. et al. Tumour biology: senescence in premalignant tumours. Nature 436, 642 (2005).

    CAS  Article  Google Scholar 

  35. 35

    Batchelor, E., Loewer, A. & Lahav, G. The ups and downs of p53: understanding protein dynamics in single cells. Nat. Rev. Cancer 9, 371–377 (2009).

    CAS  Article  Google Scholar 

  36. 36

    Zhang, T., Brazhnik, P. & Tyson, J. J. Exploring mechanisms of the DNA-damage response: p53 pulses and their possible relevance to apoptosis. Cell Cycle 6, 85–94 (2007).

    Article  Google Scholar 

  37. 37

    Winter, M. et al. Control of HIPK2 stability by ubiquitin ligase Siah-1 and checkpoint kinases ATM and ATR. Nat. Cell Biol. 10, 812–824 (2008).

    CAS  Article  Google Scholar 

  38. 38

    Kamura, T. et al. Cytoplasmic ubiquitin ligase KPC regulates proteolysis of p27Kip1 at G1 phase. Nat. Cell Biol. 6, 1229–1235 (2004).

    CAS  Article  Google Scholar 

  39. 39

    Lin, D. I. et al. Phosphorylation-dependent ubiquitination of cyclin D1 by the SCF(FBX4-αB crystallin) complex. Mol. Cell 24, 355–366 (2006).

    CAS  Article  Google Scholar 

  40. 40

    Dimitrova, Y. N. et al. Direct ubiquitination of β-catenin by Siah-1 and regulation by the exchange factor TBL1. J. Biol. Chem. 285, 13507–13516 (2010).

    CAS  Article  Google Scholar 

  41. 41

    Henderson, B. R. Nuclear-cytoplasmic shuttling of APC regulates β-catenin subcellular localization and turnover. Nat. Cell Biol. 2, 653–660 (2000).

    CAS  Article  Google Scholar 

  42. 42

    Frew, I. J. et al. Normal p53 function in primary cells deficient for Siah genes. Mol. Cell. Biol. 22, 8155–8164 (2002).

    CAS  Article  Google Scholar 

  43. 43

    Wright, W. E. & Shay, J. W. Telomere dynamics in cancer progression and prevention: fundamental differences in human and mouse telomere biology. Nat. Med. 6, 849–851 (2000).

    CAS  Article  Google Scholar 

  44. 44

    Blasco, M. A. Telomeres and human disease: ageing, cancer and beyond. Nat. Rev. Genet. 6, 611–622 (2005).

    CAS  Article  Google Scholar 

  45. 45

    Munoz, P., Blanco, R., Flores, J. M. & Blasco, M. A. XPF nuclease-dependent telomere loss and increased DNA damage in mice overexpressing TRF2 result in premature aging and cancer. Nat. Genet. 37, 1063–1071 (2005).

    CAS  Article  Google Scholar 

  46. 46

    Roperch, J. P. et al. SIAH-1 promotes apoptosis and tumor suppression through a network involving the regulation of protein folding, unfolding, and trafficking: identification of common effectors with p53 and p21Waf1. Proc. Natl Acad. Sci. USA 96, 8070–8073 (1999).

    CAS  Article  Google Scholar 

  47. 47

    Telerman, A. & Amson, R. The molecular programme of tumour reversion: the steps beyond malignant transformation. Nat. Rev. Cancer 9, 206–216 (2009).

    CAS  Article  Google Scholar 

  48. 48

    Munoz, P., Blanco, R. & Blasco, M. A. Role of the TRF2 telomeric protein in cancer and ageing. Cell Cycle 5, 718–721 (2006).

    CAS  Article  Google Scholar 

  49. 49

    Bischoff, F. Z. et al. Spontaneous abnormalities in normal fibroblasts from patients with Li-Fraumeni cancer syndrome: aneuploidy and immortalization. Cancer Res. 50, 7979–7984 (1990).

    CAS  PubMed  Google Scholar 

  50. 50

    Robles, A. I. et al. Schedule-dependent synergy between the heat shock protein 90 inhibitor 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin and doxorubicin restores apoptosis to p53-mutant lymphoma cell lines. Clin. Cancer Res. 12, 6547–6556 (2006).

    CAS  Article  Google Scholar 

  51. 51

    Sengupta, S. et al. BLM helicase-dependent transport of p53 to sites of stalled DNA replication forks modulates homologous recombination. EMBO J. 22, 1210–1222 (2003).

    CAS  Article  Google Scholar 

  52. 52

    Buolamwini, J. K. et al. Small molecule antagonists of the MDM2 oncoprotein as anticancer agents. Curr. Cancer Drug Targets 5, 57–68 (2005).

    CAS  Article  Google Scholar 

  53. 53

    Yang, Q. et al. Functional diversity of human protection of telomeres 1 isoforms in telomere protection and cellular senescence. Cancer Res. 67, 11677–11686 (2007).

    CAS  Article  Google Scholar 

  54. 54

    Conze, D. B., Wu, C. J., Thomas, J. A., Landstrom, A. & Ashwell, J. D. Lys63-linked polyubiquitination of IRAK-1 is required for interleukin-1 receptor- and toll-like receptor-mediated NF-κB activation. Mol. Cell Biol. 28, 3538–3547 (2008).

    CAS  Article  Google Scholar 

  55. 55

    Yang, Q., Zheng, Y. L. & Harris, C. C. POT1 and TRF2 cooperate to maintain telomeric integrity. Mol. Cell. Biol. 25, 1070–1080 (2005).

    CAS  Article  Google Scholar 

  56. 56

    Chang, W., Dynek, J. N. & Smith, S. TRF1 is degraded by ubiquitin-mediated proteolysis after release from telomeres. Genes Dev. 17, 1328–1333 (2003).

    CAS  Article  Google Scholar 

  57. 57

    Michishita, E., Park, J. Y., Burneskis, J. M., Barrett, J. C. & Horikawa, I. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol. Biol. Cell 16, 4623–4635 (2005).

    CAS  Article  Google Scholar 

  58. 58

    Shevchenko, A., Tomas, H., Havlis, J., Olsen, J. V. & Mann, M. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat. Protoc. 1, 2856–2860 (2006).

    CAS  Article  Google Scholar 

  59. 59

    Jeram, S. M., Srikumar, T., Pedrioli, P. G. & Raught, B. Using mass spectrometry to identify ubiquitin and ubiquitin-like protein conjugation sites. Proteomics 9, 922–934 (2009).

    CAS  Article  Google Scholar 

Download references


We thank M. Tainsky, B. Vogelstein and T. de Lange for cells and reagents. We also thank K. Kumamoto for carrying out Nutlin-3a treatment, A. Robles for carrying out doxorubicin treatment of lymphoblast cells, M. Yoneda for technical assistance and E. Spillare for continuous support. This research was supported in part by the Intramural Research Program of the NIH, NCI. B.V. was supported by the grants from the Grant Agency of the Czech Republic (number 301/08/1468) and the Internal Grant Agency of Health of Czech Republic (number NS/9812-4). J.C.B. was supported by Breast Cancer Campaign, Cancer-Research UK and the Institut National de la Sante et de la Recherche Medicale. D.L. is a Gibb fellow of Cancer-Research UK.

Author information




K.F., I.H., A.M.M. and L.M.M.J. performed experiments. B.V., J.-C.B. and D.P.L. provided essential reagents and suggestions. K.F., I.H., E.A., L.M.M.J. and C.C.H. coordinated the study and wrote the manuscript. C.C.H. was responsible for the overall project. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Curtis C. Harris.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1468 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fujita, K., Horikawa, I., Mondal, A. et al. Positive feedback between p53 and TRF2 during telomere-damage signalling and cellular senescence. Nat Cell Biol 12, 1205–1212 (2010). https://doi.org/10.1038/ncb2123

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing