Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Competition amongst Eph receptors regulates contact inhibition of locomotion and invasiveness in prostate cancer cells

This article has been updated

Abstract

Metastatic cancer cells typically fail to halt migration on contact with non-cancer cells. This invasiveness is in contrast to normal mesenchymal cells that retract on contact with another cell. Why cancer cells are defective in contact inhibition of locomotion is not understood. Here, we analyse the dynamics of prostate cancer cell lines co-cultured with fibroblasts, and demonstrate that a combinatorial code of Eph receptor activation dictates whether cell migration will be contact inhibited. The unimpeded migration of metastatic PC-3 cells towards fibroblasts is dependent on activation of EphB3 and EphB4 by ephrin-B2, which we show activates Cdc42 and cell migration. Knockdown of EphB3 and EphB4 restores contact inhibition of locomotion to PC-3 cells. Conversely, homotypic collisions between two cancer cells results in contact inhibition of locomotion, mediated by EphA–Rho–Rho kinase (ROCK) signalling. Thus, the migration of cancer cells can switch from restrained to invasive, depending on the Eph-receptor profile of the cancer cell and the reciprocal ephrin ligands expressed by neighbouring cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Failure of CIL by PC-3 cells on contact with fibroblasts.
Figure 2: Ephrin-A ligands are sufficient to induce CIL between PC-3 cells.
Figure 3: EphA2 and EphA4 are required for CIL between PC-3 cells.
Figure 4: Ephrin-B2 stimulates PC-3 cell migration.
Figure 5: Ephrin-B2 induces filopodia by activating Cdc42 in PC-3 cells.
Figure 6: EphB3 and EphB4 knockdown restores CIL of PC-3 cells on contact with fibroblasts.
Figure 7: Immunohistochemical staining of EphB4 and ephrin-B2 in prostate cancer.
Figure 8: Model of CIL regulation in PC-3 cells.

Similar content being viewed by others

Change history

  • 19 November 2010

    In the version of this article initially published online, Fig. 4c was incorrectly labelled on the y axis. This error has been corrected in both the HTML and PDF versions of the article.

References

  1. Abercrombie, M. Contact inhibition in tissue culture. In Vitro 6, 128–142 (1970).

    Article  CAS  Google Scholar 

  2. Abercrombie, M. & Turner, A. A. Contact reactions influencing cell locomotion of a mouse sarcoma in culture. Med. Biol. 56, 299–303 (1978).

    CAS  PubMed  Google Scholar 

  3. Paddock, S. W. & Dunn, G. A. Analysing collisions between fibroblasts and fibrosarcoma cells: fibrosarcoma cells show an active invasionary response. J. Cell Sci. 81, 163–187 (1986).

    CAS  PubMed  Google Scholar 

  4. Abercrombie, M. Contact inhibition and malignancy. Nature 281, 259–262 (1979).

    Article  CAS  Google Scholar 

  5. Vesely, P. & Weiss, R. A. Cell locomotion and contact inhibition of normal and neoplastic rat cells. Int. J. Cancer 11, 64–76 (1973).

    Article  CAS  Google Scholar 

  6. Gaggioli, C. et al. Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat. Cell Biol. 9, 1392–1400 (2007).

    Article  CAS  Google Scholar 

  7. Wyckoff, J. et al. A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res. 64, 7022–7029 (2004).

    Article  CAS  Google Scholar 

  8. Carmona-Fontaine, C. et al. Contact inhibition of locomotion in vivo controls neural crest directional migration. Nature 456, 957–961 (2008).

    Article  CAS  Google Scholar 

  9. Stramer, B. et al. Clasp-mediated microtubule bundling regulates persistent motility and contact repulsion in Drosophila macrophages in vivo. J. Cell Biol. 189, 681–689 (2010).

    Article  CAS  Google Scholar 

  10. Kullander, K. & Klein, R. Mechanisms and functions of Eph and ephrin signalling. Nat. Rev. Mol. Cell Biol. 3, 475–486 (2002).

    Article  CAS  Google Scholar 

  11. Poliakov, A., Cotrina, M. & Wilkinson, D. G. Diverse roles of eph receptors and ephrins in the regulation of cell migration and tissue assembly. Dev. Cell 7, 465–480 (2004).

    Article  CAS  Google Scholar 

  12. Pasquale, E. B. Eph–ephrin bidirectional signaling in physiology and disease. Cell 133, 38–52 (2008).

    Article  CAS  Google Scholar 

  13. Pasquale, E. B. Eph receptor signalling casts a wide net on cell behaviour. Nat. Rev. Mol. Cell Biol. 6, 462–475 (2005).

    Article  CAS  Google Scholar 

  14. Noren, N. K. & Pasquale, E. B. Eph receptor-ephrin bidirectional signals that target Ras and Rho proteins. Cell Signal 16, 655–666 (2004).

    Article  CAS  Google Scholar 

  15. Merlos-Suarez, A. & Batlle, E. Eph–ephrin signalling in adult tissues and cancer. Curr. Opin. Cell Biol. 20, 194–200 (2008).

    Article  CAS  Google Scholar 

  16. Surawska, H., Ma, P. C. & Salgia, R. The role of ephrins and Eph receptors in cancer. Cytokine Growth Factor Rev. 15, 419–433 (2004).

    Article  CAS  Google Scholar 

  17. Mickey, D. D., Stone, K. R., Wunderli, H., Mickey, G. H. & Paulson, D. F. Characterization of a human prostate adenocarcinoma cell line (DU 145) as a monolayer culture and as a solid tumor in athymic mice. Prog. Clin. Biol. Res. 37, 67–84 (1980).

    CAS  PubMed  Google Scholar 

  18. Kaighn, M. E., Narayan, K. S., Ohnuki, Y., Lechner, J. F. & Jones, L. W. Establishment and characterization of a human prostatic carcinoma cell line (PC-3). Invest. Urol. 17, 16–23 (1979).

    CAS  PubMed  Google Scholar 

  19. Kozlowski, J. M. et al. Metastatic behavior of human tumor cell lines grown in the nude mouse. Cancer Res. 44, 3522–3529 (1984).

    CAS  PubMed  Google Scholar 

  20. Zhu, A., Zhang, C. X. & Lieberman, H. B. Rad9 has a functional role in human prostate carcinogenesis. Cancer Res. 68, 1267–1274 (2008).

    Article  CAS  Google Scholar 

  21. Huang, X., Wu, D., Jin, H., Stupack, D. & Wang, J. Y. Induction of cell retraction by the combined actions of Abl–CrkII and Rho–ROCK1 signaling. J. Cell Biol. 183, 711–723 (2008).

    Article  CAS  Google Scholar 

  22. Parri, M. et al. EphrinA1 activates a Src/focal adhesion kinase-mediated motility response leading to rho-dependent actino/myosin contractility. J. Biol. Chem. 282, 19619–19628 (2007).

    Article  CAS  Google Scholar 

  23. Chaib, H., Cockrell, E. K., Rubin, M. A. & Macoska, J. A. Profiling and verification of gene expression patterns in normal and malignant human prostate tissues by cDNA microarray analysis. Neoplasia 3, 43–52 (2001).

    Article  CAS  Google Scholar 

  24. Huusko, P. et al. Nonsense-mediated decay microarray analysis identifies mutations of EPHB2 in human prostate cancer. Nat. Genet. 36, 979–983 (2004).

    Article  CAS  Google Scholar 

  25. Xia, G. et al. EphB4 expression and biological significance in prostate cancer. Cancer Res. 65, 4623–4632 (2005).

    Article  CAS  Google Scholar 

  26. Lee, Y. C. et al. Investigation of the expression of the EphB4 receptor tyrosine kinase in prostate carcinoma. BMC Cancer 5, 119 (2005).

    Article  Google Scholar 

  27. Wegmeyer, H. et al. EphA4-dependent axon guidance is mediated by the RacGAP α2-chimaerin. Neuron 55, 756–767 (2007).

    Article  CAS  Google Scholar 

  28. Iwasato, T. et al. Rac–GAP α-chimerin regulates motor-circuit formation as a key mediator of EphrinB3/EphA4 forward signaling. Cell 130, 742–753 (2007).

    Article  CAS  Google Scholar 

  29. Nakayama, M. et al. Rho-kinase phosphorylates PAR-3 and disrupts PAR complex formation. Dev. Cell 14, 205–215 (2008).

    Article  CAS  Google Scholar 

  30. Bostwick, D. G., Leske, D. A., Qian, J. & Sinha, A. A. Prostatic intraepithelial neoplasia and well differentiated adenocarcinoma maintain an intact basement membrane. Pathol. Res. Pract. 191, 850–855 (1995).

    Article  CAS  Google Scholar 

  31. Bracke, M. E. et al. Functional downregulation of the E-cadherin–catenin complex leads to loss of contact inhibition of motility and of mitochondrial activity, but not of growth in confluent epithelial cell cultures. Eur. J. Cell Biol. 74, 342–349 (1997).

    CAS  PubMed  Google Scholar 

  32. Huttenlocher, A. et al. Integrin and cadherin synergy regulates contact inhibition of migration and motile activity. J. Cell Biol. 141, 515–526 (1998).

    Article  CAS  Google Scholar 

  33. Takai, Y., Miyoshi, J., Ikeda, W. & Ogita, H. Nectins and nectin-like molecules: roles in contact inhibition of cell movement and proliferation. Nat. Rev. Mol. Cell Biol. 9, 603–615 (2008).

    Article  CAS  Google Scholar 

  34. Etienne-Manneville, S. Cdc42—the centre of polarity. J. Cell Sci. 117, 1291–1300 (2004).

    Article  CAS  Google Scholar 

  35. Irie, F. & Yamaguchi, Y. EphB receptors regulate dendritic spine development via intersectin, Cdc42 and N-WASP. Nat. Neurosci. 5, 1117–1118 (2002).

    Article  CAS  Google Scholar 

  36. Penzes, P. et al. Rapid induction of dendritic spine morphogenesis by trans-synaptic ephrinB–EphB receptor activation of the Rho-GEF kalirin. Neuron 37, 263–274 (2003).

    Article  CAS  Google Scholar 

  37. Marston, D. J., Dickinson, S. & Nobes, C. D. Rac-dependent trans-endocytosis of ephrinBs regulates Eph–ephrin contact repulsion. Nat. Cell Biol. 5, 879–888 (2003).

    Article  CAS  Google Scholar 

  38. Noren, N. K. & Pasquale, E. B. Paradoxes of the EphB4 receptor in cancer. Cancer Res. 67, 3994–3997 (2007).

    Article  CAS  Google Scholar 

  39. Genander, M. et al. Dissociation of EphB2 signaling pathways mediating progenitor cell proliferation and tumor suppression. Cell 139, 679–692 (2009).

    Article  CAS  Google Scholar 

  40. Cortina, C. et al. EphB–ephrin-B interactions suppress colorectal cancer progression by compartmentalizing tumor cells. Nat. Genet. 39, 1376–1383 (2007).

    Article  CAS  Google Scholar 

  41. Kumar, S. R. et al. Preferential induction of EphB4 over EphB2 and its implication in colorectal cancer progression. Cancer Res. 69, 3736–3745 (2009).

    Article  CAS  Google Scholar 

  42. Bochenek, M. L., Dickinson, S., Astin, J. W., Adams, R. H. & Nobes, C. D. Ephrin-B2 regulates endothelial cell morphology and motility independently of Eph-receptor binding. J. Cell. Sci. 123, 1235–1246 (2010).

    Article  CAS  Google Scholar 

  43. Stephenson, S. A., Slomka, S., Douglas, E. L., Hewett, P. J. & Hardingham, J. E. Receptor protein tyrosine kinase EphB4 is up-regulated in colon cancer. BMC Mol. Biol. 2, 15 (2001).

    Article  CAS  Google Scholar 

  44. Munarini, N. et al. Altered mammary epithelial development, pattern formation and involution in transgenic mice expressing the EphB4 receptor tyrosine kinase. J. Cell Sci. 115, 25–37 (2002).

    CAS  PubMed  Google Scholar 

  45. Hooper, S., Marshall, J. F. & Sahai, E. Tumor cell migration in three dimensions. Methods Enzymol. 406, 625–643 (2006).

    Article  CAS  Google Scholar 

  46. Matsuoka, H., Obama, H., Kelly, M. L., Matsui, T. & Nakamoto, M. Biphasic functions of the kinase-defective Ephb6 receptor in cell adhesion and migration. J. Biol. Chem. 280, 29355–29363 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Ross for technical assistance and I. Hers for advice on immunoprecipitations, M. Brown for BMECs, A. Ziemiecki and A. -C. Andres for anti-EphB4, D. Wilkinson for anti-EphA4 and E. Pasquale for anti-EphB3. We thank P. Martin, N. Perkins and C. Paraskeva for critically reading the manuscript. We are grateful to J. Dovovan and NCRI/MRC ProMPT collaborative for facilitating clinical aspects of the work. This study has been approved by the Southmead Research Ethics Committee and was funded by a Wellcome Trust PhD studentship to J.B., an MRC studentship to S.K. and a Cancer Research UK project grant to C.D.N.

Author information

Authors and Affiliations

Authors

Contributions

J.W.A., S.K. and C.D.N. designed experiments. J.W.A. and J.C. performed the RT–PCR, J.B. performed the Cdc42-knockdown experiments, C.D.N. performed microinjection experiments and immunohistochemistry, and J.W.A. carried out all other experiments. D.G. and R.P. provided prostate tissue and J.O., J.W.A. and C.D.N. prepared and analysed prostate immunohistochemistry. J.W.A. and C.D.N. wrote the manuscript.

Corresponding author

Correspondence to Catherine D. Nobes.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 4367 kb)

Supplementary Movie 1

Supplementary Information (MOV 3650 kb)

Supplementary Movie 2

Supplementary Information (MOV 5833 kb)

Supplementary Movie 3

Supplementary Information (MOV 4450 kb)

Supplementary Movie 4

Supplementary Information (MOV 4284 kb)

Supplementary Movie 5

Supplementary Information (MOV 5069 kb)

Supplementary Movie 6

Supplementary Information (MOV 4737 kb)

Supplementary Movie 7

Supplementary Information (MOV 5434 kb)

Supplementary Movie 8

Supplementary Information (MOV 7963 kb)

Supplementary Movie 9

Supplementary Information (MOV 4549 kb)

Supplementary Movie 10

Supplementary Information (MOV 5582 kb)

Supplementary Movie 11

Supplementary Information (MOV 4704 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Astin, J., Batson, J., Kadir, S. et al. Competition amongst Eph receptors regulates contact inhibition of locomotion and invasiveness in prostate cancer cells. Nat Cell Biol 12, 1194–1204 (2010). https://doi.org/10.1038/ncb2122

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2122

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing