Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A Pumilio-induced RNA structure switch in p27-3′ UTR controls miR-221 and miR-222 accessibility

Abstract

Key regulators of 3′ untranslated regions (3′ UTRs) are microRNAs and RNA-binding proteins (RBPs)1,2. The p27 tumour suppressor is highly expressed in quiescent cells, and its downregulation is required for cell cycle entry after growth factor stimulation3,4. Intriguingly, p27 accumulates in quiescent cells despite high levels of its inhibitors miR-221 and miR-222 (Refs 5, 6). Here we show that miR-221 and miR-222 are underactive towards p27-3′ UTR in quiescent cells, as a result of target site hindrance. Pumilio-1 (PUM1) is a ubiquitously expressed RBP that was shown to interact with p27-3′ UTR7,8. In response to growth factor stimulation, PUM1 is upregulated and phosphorylated for optimal induction of its RNA-binding activity towards the p27-3′ UTR. PUM1 binding induces a local change in RNA structure that favours association with miR-221 and miR-222, efficient suppression of p27 expression, and rapid entry to the cell cycle. We have therefore uncovered a novel RBP-induced structural switch modulating microRNA-mediated gene expression regulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: miR-221 and miR-222 are underactive towards p27 in quiescent cells.
Figure 2: Pumilio is required for miR-221 and miR-222 function.
Figure 3: PUM1 RNA-binding activity is enhanced in cycling versus quiescent cells.
Figure 4: Pumilio regulates p27-dependent cell cycle re-entry from quiescence.
Figure 5: Pumilio binding alters local p27-3′ UTR structure and miR-221 and miR-222 accessibility.

Similar content being viewed by others

References

  1. Filipowicz, W., Bhattacharyya, S. N. & Sonenberg, N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nature Rev. Genet. 9, 102–114 (2008).

    Article  CAS  Google Scholar 

  2. Kedde, M. & Agami, R. Interplay between microRNAs and RNA-binding proteins determines developmental processes. Cell Cycle 7, 899–903 (2008).

    Article  CAS  Google Scholar 

  3. Hengst, L. & Reed, S. I. Translational control of p27Kip1 accumulation during the cell cycle. Science 271, 1861–1864 (1996).

    Article  CAS  Google Scholar 

  4. Chu, I. M., Hengst, L. & Slingerland, J. M. The Cdk inhibitor p27 in human cancer: prognostic potential and relevance to anticancer therapy. Nature Rev. Cancer 8, 253–267 (2008).

    Article  CAS  Google Scholar 

  5. le Sage, C. et al. Regulation of the p27Kip1 tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation. EMBO J. 26, 3699–3708 (2007).

    Article  CAS  Google Scholar 

  6. Lotterman, C. D., Kent, O. A. & Mendell, J. T. Functional integration of microRNAs into oncogenic and tumor suppressor pathways. Cell Cycle 7, 2493–2499 (2008).

    Article  CAS  Google Scholar 

  7. Galgano, A. et al. Comparative analysis of mRNA targets for human PUF-family proteins suggests extensive interaction with the miRNA regulatory system. PLoS ONE 3, e3164 (2008).

    Article  Google Scholar 

  8. Morris, A. R., Mukherjee, N. & Keene, J. D. Ribonomic analysis of human Pum1 reveals cis-trans conservation across species despite evolution of diverse mRNA target sets. Mol. Cell. Biol. 28, 4093–4103 (2008).

    Article  CAS  Google Scholar 

  9. Kloosterman, W. P. & Plasterk, R. H. The diverse functions of microRNAs in animal development and disease. Dev. Cell 11, 441–450 (2006).

    Article  CAS  Google Scholar 

  10. Voorhoeve, P. M. & Agami, R. Classifying microRNAs in cancer: the good, the bad and the ugly. Biochim. Biophys. Acta 1775, 274–282 (2007).

    CAS  PubMed  Google Scholar 

  11. Nolde, M. J., Saka, N., Reinert, K. L. & Slack, F. J. The Caenorhabditis elegans pumilio homolog, puf-9, is required for the 3′UTR-mediated repression of the let-7 microRNA target gene, hbl-1. Dev. Biol. 305, 551–563 (2007).

    Article  CAS  Google Scholar 

  12. Brummelkamp, T. R., Bernards, R. & Agami, R. Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell 2, 243–247 (2002).

    Article  CAS  Google Scholar 

  13. Kedde, M. et al. RNA-binding protein Dnd1 inhibits microRNA access to target mRNA. Cell 131, 1273–1286 (2007).

    Article  CAS  Google Scholar 

  14. Pillai, R. S. et al. Inhibition of translational initiation by Let-7 microRNA in human cells. Science 309, 1573–1576 (2005).

    Article  CAS  Google Scholar 

  15. van Rooij, E. et al. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc. Natl Acad. Sci. USA 105, 13027–13032 (2008).

    Article  CAS  Google Scholar 

  16. Leung, A. K., Calabrese, J. M. & Sharp, P. A. Quantitative analysis of Argonaute protein reveals microRNA-dependent localization to stress granules. Proc. Natl Acad. Sci. USA 103, 18125–18130 (2006).

    Article  CAS  Google Scholar 

  17. Kedersha, N. et al. Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J. Cell Biol. 169, 871–884 (2005).

    Article  CAS  Google Scholar 

  18. Gnad, F. et al. PHOSIDA (phosphorylation site database): management, structural and evolutionary investigation, and prediction of phosphosites. Genome Biol. 8, R250 (2007).

    Article  Google Scholar 

  19. Olsen, J. V. et al. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127, 635–648 (2006).

    Article  CAS  Google Scholar 

  20. Fero, M. L., Randel, E., Gurley, K. E., Roberts, J. M. & Kemp, C. J. The murine gene p271 is haplo-insufficient for tumour suppression. Nature 396, 177–180 (1998).

    Article  CAS  Google Scholar 

  21. Hofacker, I. L. Vienna RNA secondary structure server. Nucleic Acids Res. 31, 3429–3431 (2003).

    Article  CAS  Google Scholar 

  22. Medina, R. et al. MicroRNAs 221 and 222 bypass quiescence and compromise cell survival. Cancer Res. 68, 2773–2780 (2008).

    Article  CAS  Google Scholar 

  23. Voorhoeve, P. M. et al. A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell 124, 1169–1181 (2006).

    Article  CAS  Google Scholar 

  24. Duursma, A. & Agami, R. p53-dependent regulation of Cdc6 protein stability controls cellular proliferation. Mol. Cell. Biol. 25, 6937–6947 (2005).

    Article  CAS  Google Scholar 

  25. Kent, W. J. et al. The human genome browser at UCSC. Genome Res. 12, 996–1006 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank all members of the Agami laboratory for technical help and discussions. We also thank André Gerber for constructs, Kees Jalink for advice on fluorescence lifetime imaging microscopy measurements, and R. B. Israel for assistance with statistical analysis. This work was supported by the EURYI (European research young investigator award), ERC (European Research Council), KWF (koningin wilhelmina fonds; Dutch cancer foundation) and Horizon-NWO (Nederlandse Organisatie voor Wetenschappelijk Onderzoek; R.A.) and an EMBO long-term fellowship (R.E.).

Author information

Authors and Affiliations

Authors

Contributions

M.K. and M.v.K. performed most of the experimental work. R.A. supervised the project. W.Z. performed fluorescence lifetime imaging microscopy and confocal laser scanning microscopy analyses. J.O.V. provided technical assistance. R.E. performed bioinformatical analyses. M.K., M.v.K. and R.A. wrote the manuscript.

Corresponding author

Correspondence to Reuven Agami.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2998 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kedde, M., van Kouwenhove, M., Zwart, W. et al. A Pumilio-induced RNA structure switch in p27-3′ UTR controls miR-221 and miR-222 accessibility. Nat Cell Biol 12, 1014–1020 (2010). https://doi.org/10.1038/ncb2105

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2105

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing