Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ubiquitylation of the amino terminus of Myc by SCFβ-TrCP antagonizes SCFFbw7-mediated turnover

Abstract

The SCFFbw7 ubiquitin ligase mediates growth-factor-regulated turnover of the Myc oncoprotein. Here we show that SCFβ-TrCP binds to Myc by means of a characteristic phosphodegron and ubiquitylates Myc; this results in enhanced Myc stability. SCFFbw7 and SCFβ-TrCP can exert these differential effects through polyubiquitylation of the amino terminus of Myc. Whereas SCFFbw7 with the Cdc34 ubiquitin-conjugating enzyme specifically requires lysine 48 (K48) of ubiquitin, SCFβ-TrCP uses the UbcH5 ubiquitin-conjugating enzyme to form heterotypic polyubiquitin chains on Myc. Ubiquitylation of Myc by SCFβ-TrCP is required for Myc-dependent acceleration of cell cycle progression after release from an arrest in S phase. Therefore, alternative ubiquitylation events at the N terminus can lead to the ubiquitylation-dependent stabilization of Myc.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Depletion of β-TrCP stimulates Fbw7-dependent degradation of Myc.
Figure 2: β-TrCP binds and regulates Myc stability through a consensus recognition motif.
Figure 3: Fbw7 and β-TrCP regulate Myc levels by means of Cdc34-dependent and UbcH5-dependent ubiquitylation, respectively.
Figure 4: Fbw7 and β-TrCP regulate Myc turnover through the assembly of polyubiquitin chains with different linkages on Myc.
Figure 5: β-TrCP-dependent ubiquitylation is required for Myc-dependent cell cycle progression during S and G2 phases.
Figure 6: Polo-like kinase 1 (Plk1) regulates β-TrCP-dependent ubiquitylation and Myc stability in G2 phase.
Figure 7: Model describing our findings.

Similar content being viewed by others

References

  1. Levens, D. L. Reconstructing MYC. Genes Dev. 17, 1071–1077 (2003).

    Article  CAS  Google Scholar 

  2. Oster, S. K., Ho, C. S., Soucie, E. L. & Penn, L. Z. The myc oncogene: MarvelouslY Complex. Adv. Cancer Res. 84, 81–154 (2002).

    Article  CAS  Google Scholar 

  3. Eilers, M. & Eisenman, R. N. Myc's broad reach. Genes Dev. 22, 2755–2766 (2008).

    Article  CAS  Google Scholar 

  4. Eilers, M., Schirm, S. & Bishop, J. M. The MYC protein activates transcription of the alpha-prothymosin gene. EMBO J. 10, 133–141 (1991).

    Article  CAS  Google Scholar 

  5. Robinson, K., Asawachaicharn, N., Galloway, D. A. & Grandori, C. c-Myc accelerates S-phase and requires WRN to avoid replication stress. PLoS ONE 4, e5951 (2009).

    Article  Google Scholar 

  6. Schorl, C. & Sedivy, J. M. Loss of protooncogene c-Myc function impedes G1 phase progression both before and after the restriction point. Mol. Biol. Cell 14, 823–835 (2003).

    Article  CAS  Google Scholar 

  7. Wang, H. et al. c-Myc depletion inhibits proliferation of human tumor cells at various stages of the cell cycle. Oncogene 27, 1905–1915 (2008).

    Article  CAS  Google Scholar 

  8. Welcker, M. et al. The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation. Proc. Natl Acad. Sci. USA 101, 9085–9090 (2004).

    Article  CAS  Google Scholar 

  9. Yada, M. et al. Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7. EMBO J. 23, 2116–2125 (2004).

    Article  CAS  Google Scholar 

  10. Sears, R. et al. Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev. 14, 2501–2514. (2000).

    Article  CAS  Google Scholar 

  11. Bhatia, K. et al. Point mutations in the c-Myc transactivation domain are common in Burkitt's lymphoma and mouse plasmacytomas. Nat. Genet. 5, 56–61 (1993).

    Article  CAS  Google Scholar 

  12. Moberg, K. H., Bell, D. W., Wahrer, D. C., Haber, D. A. & Hariharan, I. K. Archipelago regulates Cyclin E levels in Drosophila and is mutated in human cancer cell lines. Nature 413, 311–316 (2001).

    Article  CAS  Google Scholar 

  13. Kim, S. Y., Herbst, A., Tworkowski, K. A., Salghetti, S. E. & Tansey, W. P. Skp2 regulates Myc protein stability and activity. Mol. Cell 11, 1177–1188 (2003).

    Article  CAS  Google Scholar 

  14. von der Lehr, N. et al. The F-box protein Skp2 participates in c-Myc proteosomal degradation and acts as a cofactor for c-Myc-regulated transcription. Mol. Cell 11, 1189–1200 (2003).

    Article  CAS  Google Scholar 

  15. Choi, S. H., Wright, J. B., Gerber, S. A. & Cole, M. D. Myc protein is stabilized by suppression of a novel E3 ligase complex in cancer cells. Genes Dev. 24, 1236–1241 (2010).

    Article  CAS  Google Scholar 

  16. Adhikary, S. et al. The ubiquitin ligase HectH9 regulates transcriptional activation by Myc and is essential for tumor cell proliferation. Cell 123, 409–421 (2005).

    Article  CAS  Google Scholar 

  17. Zhao, X. et al. The N-Myc–DLL3 cascade is suppressed by the ubiquitin ligase Huwe1 to inhibit proliferation and promote neurogenesis in the developing brain. Dev. Cell 17, 210–221 (2009).

    Article  CAS  Google Scholar 

  18. Otto, T. et al. Stabilization of N-Myc is a critical function of Aurora A in human neuroblastoma. Cancer Cell 15, 67–78 (2009).

    Article  CAS  Google Scholar 

  19. Popov, N. et al. The ubiquitin-specific protease USP28 is required for MYC stability. Nat. Cell Biol. 9, 765–774 (2007).

    Article  CAS  Google Scholar 

  20. Frescas, D. & Pagano, M. Deregulated proteolysis by the F-box proteins SKP2 and β-TrCP: tipping the scales of cancer. Nat. Rev. Cancer 8, 438–449 (2008).

    Article  CAS  Google Scholar 

  21. Winston, J. T. et al. The SCFβ-TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IκBα and β-catenin and stimulates IκBα ubiquitination in vitro. Genes Dev. 13, 270–283 (1999).

    Article  CAS  Google Scholar 

  22. Hattori, K., Hatakeyama, S., Shirane, M., Matsumoto, M. & Nakayama, K. Molecular dissection of the interactions among IκBα, FWD1, and Skp1 required for ubiquitin-mediated proteolysis of IκBα. J. Biol. Chem. 274, 29641–29647 (1999).

    Article  CAS  Google Scholar 

  23. Wu, G. et al. Structure of a β-TrCP1-Skp1-β-catenin complex: destruction motif binding and lysine specificity of the SCFβ-TrCP1 ubiquitin ligase. Mol. Cell 11, 1445–1456 (2003).

    Article  CAS  Google Scholar 

  24. Tang, X. et al. Suprafacial orientation of the SCFCdc4 dimer accommodates multiple geometries for substrate ubiquitination. Cell 129, 1165–1176 (2007).

    Article  CAS  Google Scholar 

  25. Gonen, H. et al. Identification of the ubiquitin carrier proteins, E2s, involved in signal-induced conjugation and subsequent degradation of IκBα. J. Biol. Chem. 274, 14823–14830 (1999).

    Article  CAS  Google Scholar 

  26. Verma, R., Feldman, R. M. & Deshaies, R. J. SIC1 is ubiquitinated in vitro by a pathway that requires CDC4, CDC34, and cyclin/CDK activities. Mol. Biol. Cell 8, 1427–1437 (1997).

    Article  CAS  Google Scholar 

  27. Kuras, L. et al. Dual regulation of the met4 transcription factor by ubiquitin-dependent degradation and inhibition of promoter recruitment. Mol. Cell 10, 69–80 (2002).

    Article  CAS  Google Scholar 

  28. Ikeda, F. & Dikic, I. Atypical ubiquitin chains: new molecular signals. 'Protein Modifications: Beyond the Usual Suspects' review series. EMBO Rep. 9, 536–542 (2008).

    Article  CAS  Google Scholar 

  29. Kim, H. T. et al. Certain pairs of ubiquitin-conjugating enzymes (E2s) and ubiquitin-protein ligases (E3s) synthesize nondegradable forked ubiquitin chains containing all possible isopeptide linkages. J. Biol. Chem. 282, 17375–17386 (2007).

    Article  CAS  Google Scholar 

  30. Zaaroor-Regev, D. et al. Regulation of the polycomb protein Ring1B by self-ubiquitination or by E6-AP may have implications to the pathogenesis of Angelman syndrome. Proc. Natl Acad. Sci. USA (2010).

  31. Chakraborty, A. A. & Tansey, W. P. Inference of cell cycle-dependent proteolysis by laser scanning cytometry. Exp. Cell Res. 315, 1772–1778 (2009).

    Article  CAS  Google Scholar 

  32. Seki, A., Coppinger, J. A., Jang, C. Y., Yates, J. R. & Fang, G. Bora and the kinase Aurora A cooperatively activate the kinase Plk1 and control mitotic entry. Science 320, 1655–1658 (2008).

    Article  CAS  Google Scholar 

  33. Macurek, L. et al. Polo-like kinase-1 is activated by Aurora A to promote checkpoint recovery. Nature 455, 119–123 (2008).

    Article  CAS  Google Scholar 

  34. Steegmaier, M. et al. BI 2536, a potent and selective inhibitor of polo-like kinase 1, inhibits tumor growth in vivo. Curr. Biol. 17, 316–322 (2007).

    Article  CAS  Google Scholar 

  35. Otto, T. et al. Stabilization of N-Myc is a critical function of Aurora-A in human neuroblastoma. Cancer Cell 15, 67–78 (2009).

    Article  CAS  Google Scholar 

  36. Petroski, M. D. & Deshaies, R. J. Mechanism of lysine 48-linked ubiquitin-chain synthesis by the cullin-RING ubiquitin-ligase complex SCF-Cdc34. Cell 123, 1107–1120 (2005).

    Article  CAS  Google Scholar 

  37. Brzovic, P. S. & Klevit, R. E. Ubiquitin transfer from the E2 perspective: why is UbcH5 so promiscuous? Cell Cycle 5, 2867–2873 (2006).

    Article  CAS  Google Scholar 

  38. Brzovic, P. S., Lissounov, A., Christensen, D. E., Hoyt, D. W. & Klevit, R. E. A UbcH5/ubiquitin noncovalent complex is required for processive BRCA1-directed ubiquitination. Mol. Cell 21, 873–880 (2006).

    Article  CAS  Google Scholar 

  39. Blanco-Bose, W. E. et al. C-Myc and its target FoxM1 are critical downstream effectors of constitutive androstane receptor (CAR) mediated direct liver hyperplasia. Hepatology 48, 1302–1311 (2008).

    Article  CAS  Google Scholar 

  40. Hann, S. R., Thompson, C. B. & Eisenman, R. E. c-myc oncogene protein synthesis is independent of the cell cycle in human and avian cells. Nature 314, 366–369 (1985).

    Article  CAS  Google Scholar 

  41. Herold, S., Herkert, B. & Eilers, M. Facilitating replication under stress: an oncogenic function of MYC? Nat. Rev. Cancer 9, 441–444 (2009).

    Article  CAS  Google Scholar 

  42. Trenz, K., Errico, A. & Costanzo, V. Plx1 is required for chromosomal DNA replication under stressful conditions. EMBO J. 27, 876–885 (2008).

    Article  CAS  Google Scholar 

  43. Dominguez-Sola, D. et al. Non-transcriptional control of DNA replication by c-Myc. Nature 448, 445–451 (2007).

    Article  CAS  Google Scholar 

  44. Koch, H. B. et al. Large-scale identification of c-MYC-associated proteins using a combined TAP/MudPIT approach. Cell Cycle 6, 205–217 (2007).

    Article  CAS  Google Scholar 

  45. Peschiaroli, A. et al. SCFβ-TrCP-mediated degradation of Claspin regulates recovery from the DNA replication checkpoint response. Mol. Cell 23, 319–329 (2006).

    Article  CAS  Google Scholar 

  46. Mailand, N., Bekker-Jensen, S., Bartek, J. & Lukas, J. Destruction of Claspin by SCFβ-TrCP restrains Chk1 activation and facilitates recovery from genotoxic stress. Mol. Cell 23, 307–318 (2006).

    Article  CAS  Google Scholar 

  47. Herold, S. et al. Miz1 and HectH9 regulate the stability of the checkpoint protein, TopBP1. EMBO J. 27, 2851–2861 (2008).

    Article  CAS  Google Scholar 

  48. Fong, A. & Sun, S. C. Genetic evidence for the essential role of β-transducin repeat-containing protein in the inducible processing of NF-κB2/p100. J. Biol. Chem. 277, 22111–22114 (2002).

    Article  CAS  Google Scholar 

  49. DiRenzo, J. et al. Growth factor requirements and basal phenotype of an immortalized mammary epithelial cell line. Cancer Res. 62, 89–98 (2002).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Markus Welcker and Bruce Clurman for expression vectors encoding Fbw7 and β-TrCP2; Victoria Cowling for IMECs; and Axel Behrens for anti-Fbw7 antibody. This study was supported by grants from the Deutsche Forschungsgemeinschaft through the Transregio 17 ('Ras-dependent pathways in human tumours') project and the Wilhelm Sander Stiftung für Krebsforschung.

Author information

Authors and Affiliations

Authors

Contributions

N.P., C.S. and L.A.J. performed the experimental work. N.P. and M.E. planned the experiments. M.E. wrote the paper.

Corresponding author

Correspondence to Martin Eilers.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1564 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popov, N., Schülein, C., Jaenicke, L. et al. Ubiquitylation of the amino terminus of Myc by SCFβ-TrCP antagonizes SCFFbw7-mediated turnover. Nat Cell Biol 12, 973–981 (2010). https://doi.org/10.1038/ncb2104

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2104

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing