Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dissecting the molecular architecture of integrin adhesion sites by cryo-electron tomography

This article has been updated

Abstract

Focal adhesions are integrin-based multiprotein complexes, several micrometres in diameter, that mechanically link the extracellular matrix with the termini of actin bundles. The molecular diversity of focal adhesions and their role in cell migration and matrix sensing has been extensively studied, but their ultrastructural architecture is still unknown. We present the first three-dimensional structural reconstruction of focal adhesions using cryo-electron tomography. Our analyses reveal that the membrane–cytoskeleton interaction at focal adhesions is mediated through particles located at the cell membrane and attached to actin fibres. The particles have diameters of 25 ± 5 nm, and an average interspacing of approximately 45 nm. Treatment with the Rho-kinase inhibitor Y-27632 induces a rapid decrease in particle diameter, suggesting that they are highly mechanosensitive. Our findings clarify the internal architecture of focal adhesions at molecular resolution, and provide insights into their scaffolding and mechanosensory functions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cryo-electron tomography of integrin-mediated focal adhesions.
Figure 2: Adhesion-related particles at sites of focal adhesions.
Figure 3: Heterogeneity of adhesion-related particles and vinculin localization.
Figure 4: Molecular changes in the adhesion machinery induced by the Rho-kinase inhibitor Y-27632.
Figure 5: Architecture of focal adhesions at nanoscale resolution.

Similar content being viewed by others

Change history

  • 17 August 2010

    In the version of this letter initially published online, Vera Hirschfeld-Warneken was incorrectly spelled in the author list. This error has been corrected in both the HTML and PDF versions of the letter.

References

  1. Abercrombie, M. & Dunn, G. A. Adhesions of fibroblasts to substratum during contact inhibition observed by interference reflection microscopy. Exp. Cell. Res. 92, 57–62 (1975).

    Article  CAS  PubMed  Google Scholar 

  2. Wiesner, S., Lange, A. & Fässler, R. Local call: from integrins to actin assembly. Trends Cell Biol. 16, 327–329 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Ginsberg, M., Pierschbacher, M. D., Ruoslahti, E., Marguerie, G. & Plow, E. Inhibition of fibronectin binding to platelets by proteolytic fragments and synthetic peptides which support fibroblast adhesion. J. Biol. Chem. 260, 3931–3936 (1985).

    CAS  PubMed  Google Scholar 

  4. Burridge, K., Fath, K., Kelly, T., Nuckolls, G. & Turner, C. Focal adhesions: transmembrane junctions between the extracellular matrix and the cytoskeleton. Annu. Rev. Cell Biol. 4, 487–525 (1988).

    Article  CAS  PubMed  Google Scholar 

  5. Campbell, I. D. Studies of focal adhesion assembly. Biochem. Soc. Trans. 36, 263–266 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Zamir, E. & Geiger, B. Molecular complexity and dynamics of cell–matrix adhesions. J. Cell Sci. 114, 3583–3590 (2001).

    CAS  PubMed  Google Scholar 

  7. Zaidel-Bar, R., Itzkovitz, S., Ma'ayan, A., Iyengar, R. & Geiger, B. Functional atlas of the integrin adhesome. Nat. Cell Biol. 9, 858–867 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Legate, K. R., Wickstrom, S. A. & Fässler, R. Genetic and cell biological analysis of integrin outside–in signaling. Genes Dev. 23, 397–418 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Geiger, B., Spatz, J. P. & Bershadsky, A. D. Environmental sensing through focal adhesions. Nat. Rev. Mol. Cell Biol. 10, 21–33 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Winograd-Katz, S. E., Itzkovitz, S., Kam, Z. & Geiger, B. Multiparametric analysis of focal adhesion formation by RNAi-mediated gene knockdown. J. Cell Biol. 186, 423–436 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Delon, I. & Brown, N. H. Integrins and the actin cytoskeleton. Curr. Opin. Cell Biol. 19, 43–50 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Feltkamp, C. A., Pijnenburg, M. A. & Roos, E. Organization of talin and vinculin in adhesion plaques of wet-cleaved chicken embryo fibroblasts. J. Cell Sci. 100, 579–587 (1991).

    CAS  PubMed  Google Scholar 

  13. Nicol, A. et al. Labeling of structural elements at the ventral plasma membrane of fibroblasts with the immunogold technique. J. Histochem. Cytochem. 35, 499–506 (1987).

    Article  CAS  PubMed  Google Scholar 

  14. Rinnerthaler, G., Geiger, B. & Small, J. V. Contact formation during fibroblast locomotion: involvement of membrane ruffles and microtubules. J. Cell Biol. 106, 747–760 (1988).

    Article  CAS  PubMed  Google Scholar 

  15. Turner, C. E. & Miller, J. T. Primary sequence of paxillin contains putative SH2 and SH3 domain binding motifs and multiple LIM domains: identification of a vinculin and pp125Fak-binding region. J. Cell Sci. 107, 1583–1591 (1994).

    CAS  PubMed  Google Scholar 

  16. Salgia, R. et al. Molecular cloning of human paxillin, a focal adhesion protein phosphorylated by P210BCR/ABL. J. Biol. Chem. 270, 5039–5047 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Medalia, O. et al. Macromolecular architecture in eukaryotic cells visualized by cryoelectron tomography. Science 298, 1209–1213 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Vogel, V. & Sheetz, M. Local force and geometry sensing regulate cell functions. Nat. Rev. Mol. Cell Biol. 7, 265–275 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Riveline, D. et al. Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J. Cell Biol. 153, 1175–1186 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chrzanowska-Wodnicka, M. & Burridge, K. Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. J. Cell Biol. 133, 1403–1415 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Lo, S. H. Focal adhesions: what's new inside. Dev. Biol. 294, 280–291 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Petit, V. & Thiery, J. P. Focal adhesions: structure and dynamics. Biol. Cell 92, 477–494 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Singer, I. I. The fibronexus: a transmembrane association of fibronectin-containing fibers and bundles of 5 nm microfilaments in hamster and human fibroblasts. Cell 16, 675–685 (1979).

    Article  CAS  PubMed  Google Scholar 

  24. Waterman-Storer, C. M., Salmon, W. C. & Salmon, E. D. Feedback interactions between cell–cell adherens junctions and cytoskeletal dynamics in newt lung epithelial cells. Mol. Biol. Cell 11, 2471–2483 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nicolas, A., Besser, A. & Safran, S. A. Dynamics of cellular focal adhesions on deformable substrates: consequences for cell force microscopy. Biophys. J. 95, 527–539 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Beningo, K. A. & Wang, Y. L. Flexible substrata for the detection of cellular traction forces. Trends Cell Biol. 12, 79–84 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Wolfenson, H. et al. A role for the juxtamembrane cytoplasm in the molecular dynamics of focal adhesions. PLoS One 4, e4304 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zamir, E., Geiger, B. & Kam, Z. Quantitative multicolor compositional imaging resolves molecular domains in cell–matrix adhesions. PLoS ONE 3, e1901 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Frank, J. Electron Tomography (ed. Frank, J.) 1–13 (Plenum, 1992).

    Book  Google Scholar 

  30. van Heel, M. Multivariate statistical classification of noisy images (randomly oriented biological macromolecules). Ultramicroscopy 13, 165–183 (1984).

    Article  CAS  PubMed  Google Scholar 

  31. Wolfenson, H., Henis, Y. I., Geiger, B. & Bershadsky, A. D. The heel and toe of the cell's foot: a multifaceted approach for understanding the structure and dynamics of focal adhesions. Cell Motil. Cytoskeleton 66, 1017–1029 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jimenez, J., Santisteban, A., Carazo, J. M. & Carrascosa, J. L. Computer graphic display method for visualizing three-dimensional biological structures. Science 232, 1113–1115 (1986).

    Article  CAS  PubMed  Google Scholar 

  33. Avnur, Z. & Geiger, B. Substrate-attached membranes of cultured cells isolation and characterization of ventral cell membranes and the associated cytoskeleton. J. Mol. Biol. 153, 361–379 (1981).

    Article  CAS  PubMed  Google Scholar 

  34. Slot, J. W. & Geuze, H. J. A new method of preparing gold probes for multiple-labeling cytochemistry. Eur. J. Cell Biol. 38, 87–93 (1985).

    CAS  PubMed  Google Scholar 

  35. Schwartz, M. A. & DeSimone, D. W. Cell adhesion receptors in mechanotransduction. Curr. Opin. Cell Biol. 20, 551–556 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Narumiya, S., Ishizaki, T. & Uehata, M. Use and properties of ROCK-specific inhibitor Y-27632. Methods Enzymol. 325, 273–284 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Katoh, K., Kano, Y. & Ookawara, S. Rho-kinase dependent organization of stress fibers and focal adhesions in cultured fibroblasts. Genes Cells 12, 623–638 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Cavalcanti-Adam, E. A. et al. Cell spreading and focal adhesion dynamics are regulated by spacing of integrin ligands. Biophys. J. 92, 2964–2974 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Finer, J. T., Simmons, R. M. & Spudich, J. A. Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature 368, 113–119 (1994).

    Article  CAS  PubMed  Google Scholar 

  40. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Dubochet, J. et al. Cryo-electron microscopy of vitrified specimens. Q. Rev. Biophys. 21, 129–228 (1988).

    Article  CAS  PubMed  Google Scholar 

  42. Sartori, A. et al. Correlative microscopy: bridging the gap between fluorescence light microscopy and cryo-electron tomography. J. Struct. Biol. 160, 135–145 (2007).

    Article  PubMed  Google Scholar 

  43. Slot, J. W. & Geuze, H. J. A new method of preparing gold probes for multiple-labeling cytochemistry. Eur. J. Cell Biol. 38, 87–93 (1985).

    CAS  PubMed  Google Scholar 

  44. Avnur, Z. & Geiger, B. Substrate-attached membranes of cultured cells isolation and characterization of ventral cell membranes and the associated cytoskeleton. J. Mol. Biol. 153, 361–379 (1981).

    Article  CAS  PubMed  Google Scholar 

  45. Nickell, S. et al. TOM software toolbox: acquisition and analysis for electron tomography. J. Struct. Biol. 149, 227–234 (2005).

    Article  PubMed  Google Scholar 

  46. Frangakis, A. S. & Hegerl, R. Noise reduction in electron tomographic reconstructions using nonlinear anisotropic diffusion. J. Struct. Biol. 135, 239–250 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Hegerl, R. The EM Program Package: a platform for image processing in biological electron microscopy. J. Struct. Biol. 116, 30–34 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from the German-Israeli Cooperation Project (DIP H.2.2) to O. M., R. F., J. S. and B. G., an NIGMS grant from the National Institutes of Health Cell Migration Consortium (Grant No. U54 GM64346) to B. G. and an ERC Starting Grant to O. M. The authors express gratitude to B. Morgenstern for help in editing the manuscript. B. G. holds the Erwin Neter Professorial Chair in Cell and Tumor Biology.

Author information

Authors and Affiliations

Authors

Contributions

I. P., N. E., T. V., C. G. and V. H. W. performed experimental work and analysed the data. B. G., J. S., R. F. and O. M. designed the experiments, analysed the data and prepared the manuscript.

Corresponding author

Correspondence to Ohad Medalia.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 857 kb)

Supplementary Information

Supplementary Information Movie 1 (MPG 4296 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patla, I., Volberg, T., Elad, N. et al. Dissecting the molecular architecture of integrin adhesion sites by cryo-electron tomography. Nat Cell Biol 12, 909–915 (2010). https://doi.org/10.1038/ncb2095

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2095

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing