Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Nuclear transport receptor goes moonlighting

The importin-β-like transport receptors and RanGTP govern selective transport of proteins into the nucleus. It has now been shown that importin-β2 (alternatively called transportin1) also selectively targets the motor protein Kif17 to primary cilia. In analogy to the nucleus, RanGTP in the intraciliary compartment mediates dissociation of Kif17 from its transport receptor and thereby completes import.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Importin-β2 mediates the ciliary targeting of the microtubule motor KIF17.

References

  1. Goldfarb, D.S., Gariepy, J., Schoolnik, G. & Kornberg, R.D. Nature 322, 641–644 (1986).

    Article  CAS  Google Scholar 

  2. Dishinger, J.F. et al. Nat. Cell Biol. 12, 703–710 (2010).

    Article  CAS  Google Scholar 

  3. Satir, P., Pedersen, L.B. & Christensen, S.T. J. Cell Sci. 123, 499–503 (2010).

    Article  CAS  Google Scholar 

  4. Scholey, J.M. J. Cell Biol. 180, 23–29 (2008).

    Article  CAS  Google Scholar 

  5. Gherman, A., Davis, E.E. & Katsanis, N. Nat. Genet. 38, 961–962 (2006).

    Article  CAS  Google Scholar 

  6. Nachury, M.V. et al. Cell 129, 1201–1213 (2007).

    Article  CAS  Google Scholar 

  7. Yoshimura, S., Egerer, J., Fuchs, E., Haas, A.K. & Barr, F.A. J. Cell Biol. 178, 363–369 (2007).

    Article  CAS  Google Scholar 

  8. Follit, J.A., Li, L., Vucica, Y. & Pazour, G.J. J. Cell Biol. 188, 21–28 (2010).

    Article  CAS  Google Scholar 

  9. King, M.C., Lusk, C.P. & Blobel, G. Nature 442, 1003–1007 (2006).

    Article  CAS  Google Scholar 

  10. Fan, S. et al. J. Cell Biol. 178, 387–398 (2007).

    Article  CAS  Google Scholar 

  11. Richards, S.A., Lounsbury, K.M. & Macara, I.G. J. Biol. Chem. 270, 14405–14411 (1995).

    Article  CAS  Google Scholar 

  12. Carey, K.L., Richards, S.A., Lounsbury, K.M. & Macara, I.G. J. Cell Biol. 133, 985–996 (1996).

    Article  CAS  Google Scholar 

  13. Nigg, E.A. & Raff, J.W. Cell 139, 663–678 (2009).

    Article  CAS  Google Scholar 

  14. Wang, W., Budhu, A., Forgues, M. & Wang, X.W. Nat. Cell Biol. 7, 823–830 (2005).

    Article  CAS  Google Scholar 

  15. Rosenbaum, J.L. & Witman, G.B. Nat. Rev. Mol. Cell Biol. 3, 813–825 (2002).

    Article  CAS  Google Scholar 

  16. Schulze, H. et al. J. Biol. Chem. 283, 14109–14119 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gruss, O. Nuclear transport receptor goes moonlighting. Nat Cell Biol 12, 640–641 (2010). https://doi.org/10.1038/ncb2076

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2076

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing