Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A distinctive role for focal adhesion proteins in three-dimensional cell motility


Focal adhesions are large multi-protein assemblies that form at the basal surface of cells on planar dishes, and that mediate cell signalling, force transduction and adhesion to the substratum. Although much is known about focal adhesion components in two-dimensional (2D) systems, their role in migrating cells in a more physiological three-dimensional (3D) matrix is largely unknown. Live-cell microscopy shows that for cells fully embedded in a 3D matrix, focal adhesion proteins, including vinculin, paxillin, talin, α-actinin, zyxin, VASP, FAK and p130Cas, do not form aggregates but are diffusely distributed throughout the cytoplasm. Despite the absence of detectable focal adhesions, focal adhesion proteins still modulate cell motility, but in a manner distinct from cells on planar substrates. Rather, focal adhesion proteins in matrix-embedded cells regulate cell speed and persistence by affecting protrusion activity and matrix deformation, two processes that have no direct role in controlling 2D cell speed. This study shows that membrane protrusions constitute a critical motility/matrix-traction module that drives cell motility in a 3D matrix.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Regulated formation of focal adhesions in 2D, 2.5D, and 3D collagen matrix microenvironments.
Figure 2: Regulation of 2D cell motility by focal adhesion proteins is not predictive of regulation of 3D cell motility in matrix.
Figure 3: Extent of focal adhesion protein-mediated protrusion activity predicts 3D cell speed.
Figure 4: Regulation of 3D cell-matrix interactions by focal adhesion proteins.
Figure 5: Regulation of cell motility on compliant substrates by focal adhesion proteins.


  1. 1

    Sastry, S. K. & Burridge, K. Focal adhesions: a nexus for intracellular signaling and cytoskeletal dynamics. Exp. Cell Res. 261, 25–36 (2000).

    CAS  Article  Google Scholar 

  2. 2

    Riveline, D. et al. Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J. Cell Biol. 153, 1175–1186 (2001).

    CAS  Article  Google Scholar 

  3. 3

    Miyamoto, S. et al. Integrin function — molecular hierarchies of cytoskeletal and signaling molecules J. Cell Biol. 131, 791–805 (1995).

    CAS  Article  Google Scholar 

  4. 4

    Gilmore, A. P. & Burridge, K. Regulation of vinculin binding to talin and actin by phosphatidyl-inositol-4-5-bisphosphate. Nature 381, 531–535 (1996).

    CAS  Article  Google Scholar 

  5. 5

    Cukierman, E., Pankov, R., Stevens, D. R. & Yamada, K. M. Taking cell-matrix adhesions to the third dimension. Science 294, 1708–1712 (2001).

    CAS  Article  Google Scholar 

  6. 6

    Cukierman, E., Pankov, R. & Yamada, K. M. Cell interactions with three-dimensional matrices. Curr. Opin. Cell Biol. 14, 633–639 (2002).

    CAS  Article  Google Scholar 

  7. 7

    Mao, Y. & Schwarzbauer, J. E. Accessibility to the fibronectin synergy site in a 3D matrix regulates engagement of α5β1 versus αvβ3 integrin receptors. Cell Commun. Adhes. 13, 267–277 (2006).

    CAS  Article  Google Scholar 

  8. 8

    Mao, Y. & Schwarzbauer, J. E. Fibronectin fibrillogenesis, a cell-mediated matrix assembly process. Matrix Biol. 24, 389–399 (2005).

    CAS  Article  Google Scholar 

  9. 9

    Friedl, P., Entschladen, F., Conrad, C., Niggemann, B. & Zanker, K. S. CD4+ T lymphocytes migrating in three-dimensional collagen lattices lack focal adhesions and utilize β1 integrin-independent strategies for polarization, interaction with collagen fibers and locomotion. Eur. J. Immunol. 28, 2331–2343 (1998).

    CAS  Article  Google Scholar 

  10. 10

    Petroll, W. M., Ma, L. & Jester, J. V. Direct correlation of collagen matrix deformation with focal adhesion dynamics in living corneal fibroblasts. J. Cell Sci. 116, 1481–1491 (2003).

    CAS  Article  Google Scholar 

  11. 11

    Wehrle-Haller, B. & Imhof, B. The inner lives of focal adhesions. Trends Cell Biol. 12, 382–389 (2002).

    CAS  Article  Google Scholar 

  12. 12

    Pelham, R. J., Jr. & Wang, Y. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl Acad. Sci. USA 94, 13661–13665 (1997).

    CAS  Article  Google Scholar 

  13. 13

    Shemesh, T., Geiger, B., Bershadsky, A. D. & Kozlov, M. M. Focal adhesions as mechanosensors: a physical mechanism. Proc. Natl Acad. Sci. USA 102, 12383–12388 (2005).

    CAS  Article  Google Scholar 

  14. 14

    Hanada, M. et al. Focal adhesion kinase is activated in invading fibrosarcoma cells and regulates metastasis. Clin. Exp. Metastasis 22, 485–494 (2005).

    CAS  Article  Google Scholar 

  15. 15

    Salgia, R. et al. Expression of the focal adhesion protein paxillin in lung cancer and its relation to cell motility. Oncogene 18, 67–77 (1999).

    CAS  Article  Google Scholar 

  16. 16

    Yu, Y. P. & Luo, J. H. Myopodin-mediated suppression of prostate cancer cell migration involves interaction with zyxin. Cancer Res. 66, 7414–7419 (2006).

    CAS  Article  Google Scholar 

  17. 17

    Lo, C. M., Wang, H. B., Dembo, M. & Wang, Y. L. Cell movement is guided by the rigidity of the substrate. Biophys. J. 79, 144–152 (2000).

    CAS  Article  Google Scholar 

  18. 18

    Wolf, K. et al. Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J. Cell Biol. 160, 267–277 (2003).

    CAS  Article  Google Scholar 

  19. 19

    Wolf, K. et al. Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nature Cell Biol. 9, 893–904 (2007).

    CAS  Article  Google Scholar 

  20. 20

    Zhou, X. et al. Fibronectin fibrillogenesis regulates three-dimensional neovessel formation. Genes Dev. 22, 1231–1243 (2008).

    CAS  Article  Google Scholar 

  21. 21

    Sabeh, F., Shimizu-Hirota, R. & Weiss, S. J. Protease-dependent versus -independent cancer cell invasion programs: three-dimensional amoeboid movement revisited. J. Cell Biol. 185, 11–19 (2009).

    CAS  Article  Google Scholar 

  22. 22

    Ren, X. D. et al. Focal adhesion kinase suppresses Rho activity to promote focal adhesion turnover. J. Cell Sci. 113, 3673–3678 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Panorchan, P., Lee, J. S., Kole, T. P., Tseng, Y. & Wirtz, D. Microrheology and ROCK signaling of human endothelial cells embedded in a 3D matrix. Biophys. J. 91, 3499–3507 (2006).

    CAS  Article  Google Scholar 

  24. 24

    Lee, J. S. et al. Ballistic intracellular nanorheology reveals ROCK-hard cytoplasmic stiffening response to fluid flow. J. Cell Sci. 119, 1760–1768 (2006).

    CAS  Article  Google Scholar 

  25. 25

    Bloom, R. J., George, J. P., Celedon, A., Sun, S. X. & Wirtz, D. Mapping local matrix remodeling induced by a migrating tumor cell using three-dimensional multiple-particle tracking. Biophys. J. 95, 4077–4088 (2008).

    CAS  Article  Google Scholar 

  26. 26

    Webb, D. J. et al. FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly. Nature Cell Biol. 6, 154–161 (2004).

    CAS  Article  Google Scholar 

  27. 27

    Ridley, A. J. et al. Cell migration: integrating signals from front to back. Science 302, 1704–1709 (2003).

    CAS  Article  Google Scholar 

  28. 28

    Kole, T. P., Tseng, Y., Jiang, I., Katz, J. L. & Wirtz, D. Intracellular mechanics of migrating fibroblasts. Mol. Biol. Cell 16, 328–338 (2005).

    CAS  Article  Google Scholar 

  29. 29

    Munevar, S., Wang, Y. L. & Dembo, M. Distinct roles of frontal and rear cell-substrate adhesions in fibroblast migration. Mol. Biol. Cell 12, 3947–3954 (2001).

    CAS  Article  Google Scholar 

  30. 30

    Geiger, B., Spatz, J. P. & Bershadsky, A. D. Environmental sensing through focal adhesions. Nature Rev. Mol. Cell Biol. 10, 21–33 (2009).

    CAS  Article  Google Scholar 

  31. 31

    Tilghman, R. W. & Parsons, J. T. Focal adhesion kinase as a regulator of cell tension in the progression of cancer. Semin. Cancer Biol. 18, 45–52 (2008).

    CAS  Article  Google Scholar 

  32. 32

    Ngu, H. et al. Effect of focal adhesion proteins on endothelial cell adhesion, motility and orientation response to cyclic strain. Ann. Biomed. Eng. 38, 208–222 (2010).

    Article  Google Scholar 

Download references


The authors acknowledge support from NIH (CA143868, GM084204, GM080673, and CA85839). S.I.F. was supported by ARCS and NSF-GRFP. We thank Michael McCaffery and Ned Perkins for help with confocal microscopy, members of the Wirtz and Longmore groups for helpful discussions, and John Isaacs of JHMI and his group for generously providing E006AA prostate cancer cells.

Author information




Y.F. generated knockdowns; R.K. helped with data analysis and figures; D.K. supplied PA substrates of varying stiffness; A.C. developed Matlab code to track beads in traction experiments; S.F. performed all experiments and analysis and co-wrote the manuscript; G.L. and D.W. co-supervised the project and co-wrote the manuscript.

Corresponding authors

Correspondence to Gregory D. Longmore or Denis Wirtz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 767 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fraley, S., Feng, Y., Krishnamurthy, R. et al. A distinctive role for focal adhesion proteins in three-dimensional cell motility. Nat Cell Biol 12, 598–604 (2010).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing