Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MTCH2/MIMP is a major facilitator of tBID recruitment to mitochondria

Abstract

The BH3-only BID protein (BH3-interacting domain death agonist) has a critical function in the death-receptor pathway in the liver by triggering mitochondrial outer membrane permeabilization (MOMP). Here we show that MTCH2/MIMP (mitochondrial carrier homologue 2/Met-induced mitochondrial protein), a novel truncated BID (tBID)-interacting protein, is a surface-exposed outer mitochondrial membrane protein that facilitates the recruitment of tBID to mitochondria. Knockout of MTCH2/MIMP in embryonic stem cells and in mouse embryonic fibroblasts hinders the recruitment of tBID to mitochondria, the activation of Bax/Bak, MOMP, and apoptosis. Moreover, conditional knockout of MTCH2/MIMP in the liver decreases the sensitivity of mice to Fas-induced hepatocellular apoptosis and prevents the recruitment of tBID to liver mitochondria both in vivo and in vitro. In contrast, MTCH2/MIMP deletion had no effect on apoptosis induced by other pro-apoptotic Bcl-2 family members and no detectable effect on the outer membrane lipid composition. These loss-of-function models indicate that MTCH2/MIMP has a critical function in liver apoptosis by regulating the recruitment of tBID to mitochondria.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MTCH2/MIMP is an outer mitochondrial membrane protein.
Figure 2: Loss of MTCH2/MIMP in ES cells decreases the sensitivity to tBID-induced MOMP.
Figure 3: Conditional knockout of MTCH2/MIMP in MEFs decreases the sensitivity to tBID-induced apoptosis.
Figure 4: Conditional knockout of MTCH2/MIMP in MEFs hinders the recruitment of tBID to mitochondria.
Figure 5: MTCH2/MIMP deletion in the liver decreases the sensitivity of mice to Fas-induced hepatocellular apoptosis and hinders the recruitment of tBID to mitochondria.
Figure 6: MTCH2/MIMP deletion in the liver prevents the in vitro import of tBID.
Figure 7: MTCH2/MIMP deletion in the liver has no effect on the levels of CL in whole mitochondria and the OMM.

Similar content being viewed by others

References

  1. Danial, N. N. & Korsmeyer, S. J. Cell death: critical control points. Cell 116, 205–219 (2004).

    Article  CAS  Google Scholar 

  2. Youle, R. J. & Strasser, A. The BCL-2 protein family: opposing activities that mediate cell death. Nature Rev. Mol. Cell Biol. 9, 47–59 (2008).

    Article  CAS  Google Scholar 

  3. Wang, X. The expanding role of mitochondria in apoptosis. Genes Dev. 15, 2922–2933. (2001).

    CAS  Google Scholar 

  4. Kroemer, G., Galluzzi, L. & Brenner, C. Mitochondrial membrane permeabilization in cell death. Physiol. Rev. 87, 99–163 (2007).

    Article  CAS  Google Scholar 

  5. Chipuk, J. E. & Green, D. R. How do BCL-2 proteins induce mitochondrial outer membrane permeabilization? Trends Cell Biol. 18, 157–164 (2008).

    Article  CAS  Google Scholar 

  6. Yin, X. M. et al. Bid-deficient mice are resistant to Fas-induced hepatocellular apoptosis. Nature 400, 886–891 (1999).

    Article  CAS  Google Scholar 

  7. Wei, M. C. et al. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292, 727–730 (2001).

    Article  CAS  Google Scholar 

  8. Zong, W. X., Lindsten, T., Ross, A. J., MacGregor, G. R. & Thompson, C. B. BH3-only proteins that bind pro-survival Bcl-2 family members fail to induce apoptosis in the absence of Bax and Bak. Genes Dev. 15, 1481–1486. (2001).

    Article  CAS  Google Scholar 

  9. Leber, B., Lin, J. & Andrews, D. W. Embedded together: the life and death consequences of interaction of the Bcl-2 family with membranes. Apoptosis 12, 897–911 (2007).

    Article  CAS  Google Scholar 

  10. Roucou, X., Montessuit, S., Antonsson, B. & Martinou, J. C. Bax oligomerization in mitochondrial membranes requires tBid (caspase-8-cleaved Bid) and a mitochondrial protein. Biochem. J. 368, 915–921 (2002).

    Article  CAS  Google Scholar 

  11. Lovell, J. F. et al. Membrane binding by tBid initiates an ordered series of events culminating in membrane permeabilization by Bax. Cell 135, 1074–1084 (2008).

    Article  CAS  Google Scholar 

  12. Schafer, B. et al. Mitochondrial outer membrane proteins assist Bid in Bax-mediated lipidic pore formation. Mol. Biol. Cell 20, 2276–2285 (2009).

    Article  CAS  Google Scholar 

  13. Lutter, M. et al. Cardiolipin provides specificity for targeting of tBid to mitochondria. Nature Cell Biol. 2, 754–761 (2000).

    Article  CAS  Google Scholar 

  14. Lucken-Ardjomande, S., Montessuit, S. & Martinou, J. C. Contributions to Bax insertion and oligomerization of lipids of the mitochondrial outer membrane. Cell Death Differ. 15, 929–937 (2008).

    Article  CAS  Google Scholar 

  15. Grinberg, M. et al. Mitochondrial carrier homolog 2 is a target of tBID in cells signaled to die by tumor necrosis factor α. Mol. Cell. Biol. 25, 4579–4590 (2005).

    Article  CAS  Google Scholar 

  16. Gross, A. Mitochondrial carrier homolog 2: a clue to cracking the BCL-2 family riddle? J. Bioenerg. Biomembr. 37, 113–119 (2005).

    Article  CAS  Google Scholar 

  17. Leibowitz-Amit, R. et al. Mimp, a mitochondrial carrier homologue, inhibits Met-HGF/SF-induced scattering and tumorigenicity by altering Met-HGF/SF signaling pathways. Cancer Res. 66, 8687–8697 (2006).

    Article  CAS  Google Scholar 

  18. Palmieri, F. Diseases caused by defects of mitochondrial carriers: a review. Biochim. Biophys. Acta 1777, 564–578 (2008).

    Article  CAS  Google Scholar 

  19. Bathori, G., Csordas, G., Garcia-Perez, C., Davies, E. & Hajnoczky, G. Ca2+-dependent control of the permeability properties of the mitochondrial outer membrane and voltage-dependent anion-selective channel (VDAC). J. Biol. Chem. 281, 17347–17358 (2006).

    Article  CAS  Google Scholar 

  20. Koehler, C. M. et al. Import of mitochondrial carriers mediated by essential proteins of the intermembrane space. Science 279, 369–373 (1998).

    Article  CAS  Google Scholar 

  21. Sarig, R. et al. BID-D59A is a potent inducer of apoptosis in primary embryonic fibroblasts. J. Biol. Chem. 278, 10707–10715 (2003).

    Article  CAS  Google Scholar 

  22. Goping, I. S. et al. Regulated targeting of BAX to mitochondria. J. Cell Biol. 143, 207–215 (1998).

    Article  CAS  Google Scholar 

  23. Kamer, I. et al. Proapoptotic BID is an ATM effector in the DNA-damage response. Cell 122, 593–603 (2005).

    Article  CAS  Google Scholar 

  24. Shelton, S. N., Shawgo, M. E. & Robertson, J. D. Cleavage of Bid by executioner caspases mediates feed forward amplification of mitochondrial outer membrane permeabilization during genotoxic stress-induced apoptosis in Jurkat cells. J. Biol. Chem. 284, 11247–11255 (2009).

    Article  CAS  Google Scholar 

  25. Tan, K. O. et al. MAP-1 is a mitochondrial effector of Bax. Proc. Natl Acad. Sci. USA 102, 14623–14628 (2005).

    Article  CAS  Google Scholar 

  26. Galli-Taliadoros, L. A., Sedgwick, J. D., Wood, S. A. & Korner, H. Gene knock-out technology: a methodological overview for the interested novice. J. Immunol. Methods 181, 1–15 (1995).

    Article  CAS  Google Scholar 

  27. Hogan, B., Beddington, R., Constantini, F. & Lacy, E. Manipulating the Mouse Embryo (Cold Spring Harbor Laboratory Press, 1994).

    Google Scholar 

  28. Madesh, M., Antonsson, B., Srinivasula, S. M., Alnemri, E. S. & Hajnoczky, G. Rapid kinetics of tBid-induced cytochrome c and Smac/DIABLO release and mitochondrial depolarization. J. Biol. Chem. 277, 5651–5659 (2002).

    Article  CAS  Google Scholar 

  29. Nagy, A. Cre recombinase: the universal reagent for genome tailoring. Genesis 26, 99–109 (2000).

    Article  CAS  Google Scholar 

  30. Lallemand, Y., Luria, V., Haffner-Krausz, R. & Lonai, P. Maternally expressed PGK-Cre transgene as a tool for early and uniform activation of the Cre site-specific recombinase. Transgenic Res. 7, 105–112 (1998).

    Article  CAS  Google Scholar 

  31. Postic, C. et al. Dual roles for glucokinase in glucose homeostasis as determined by liver and pancreatic β-cell-specific gene knock-outs using Cre recombinase. J. Biol. Chem. 274, 305–315 (1999).

    Article  CAS  Google Scholar 

  32. Peitz, M., Pfannkuche, K., Rajewsky, K. & Edenhofer, F. Ability of the hydrophobic FGF and basic TAT peptides to promote cellular uptake of recombinant Cre recombinase: a tool for efficient genetic engineering of mammalian genomes. Proc. Natl Acad. Sci. USA 99, 4489–4494 (2002).

    Article  CAS  Google Scholar 

  33. Gillissen, B. et al. Induction of cell death by the BH3-only Bcl-2 homolog Nbk/Bik is mediated by an entirely Bax-dependent mitochondrial pathway. EMBO J. 22, 3580–3590 (2003).

    Article  CAS  Google Scholar 

  34. Grinberg, M. et al. tBID homooligomerizes in the mitochondrial membrane to induce apoptosis. J. Biol. Chem. 277, 12237–12245 (2002).

    Article  CAS  Google Scholar 

  35. Ruffolo, S. C. & Shore, G. C. BCL-2 selectively interacts with the BID-induced open conformer of BAK, inhibiting BAK auto-oligomerization. J. Biol. Chem. 278, 25039–25045 (2003).

    Article  CAS  Google Scholar 

  36. Claypool, S. M., McCaffery, J. M. & Koehler, C. M. Mitochondrial mislocalization and altered assembly of a cluster of Barth syndrome mutant tafazzins. J. Cell Biol. 174, 379–390 (2006).

    Article  CAS  Google Scholar 

  37. Da Cruz, S. et al. Proteomic analysis of the mouse liver mitochondrial inner membrane. J. Biol. Chem. 278, 41566–41571 (2003).

    Article  CAS  Google Scholar 

  38. Vaz, F. M., Houtkooper, R. H., Valianpour, F., Barth, P. G. & Wanders, R. J. Only one splice variant of the human TAZ gene encodes a functional protein with a role in cardiolipin metabolism. J. Biol. Chem. 278, 43089–43094 (2003).

    Article  CAS  Google Scholar 

  39. Houtkooper, R. H. et al. Identification and characterization of human cardiolipin synthase. FEBS Lett. 580, 3059–3064 (2006).

    Article  CAS  Google Scholar 

  40. Valianpour, F. et al. Monolysocardiolipins accumulate in Barth syndrome but do not lead to enhanced apoptosis. J. Lipid Res. 46, 1182–1195 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to S. Jung for advice regarding the animal studies; A. Harmelin, R. Haffner, A. Maizenberg, G. Damari and T. Berkutzki for help with the animal and ES cell studies; H. van Lenthe and F. Stet for technical assistance with the phospholipid analysis; T. Langer (University of Cologne) for the TAT-Cre plasmid; T. S. Tanaka (University of Illinois at Urbana-Champaign) for DNA probes for Brachyury; D. Wallach (Weizmann Institute) for anti-Fas antibodies; and R. Marcellus (McGill University) for recombinant adenoviruses. This study was supported in part by the USA–Israel Binational Science Foundation, the Ministero dell'Università e della Ricerca, the Apulia Region, and the University of Bari. It was also supported by a grant of the Prinses Beatrix Fonds to F.M.V. and grants of the Barth Syndrome Foundation to W.K. and F.M.V. A.G. is the incumbent of the Armour Family Career Development Chair of cancer research. E.A.J. is funded by a National Institutes of Health (NIH) Minority Access to Research Careers U*STAR Scholarship, and S.W. is funded by a NIH National Research Service Award.

Author information

Authors and Affiliations

Authors

Contributions

Y.Z., L.S, N.Y.-O., M.S. and M.M. performed most of the experiments that characterized the knockout mice and cells. R.H.H and F.M.V. performed the phospholipid analysis. F.D.L, G.F. and F.P. assessed the carrier activity of MTCH2/MIMP. B.G. and P.T.D. prepared the Bim recombinant adenoviruses. E.J., S.W. and C.M.K. performed the studies of import into yeast mitochondria. Y.Z., L.S. and A.G. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Atan Gross.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1043 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaltsman, Y., Shachnai, L., Yivgi-Ohana, N. et al. MTCH2/MIMP is a major facilitator of tBID recruitment to mitochondria. Nat Cell Biol 12, 553–562 (2010). https://doi.org/10.1038/ncb2057

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2057

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing